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Abstract

Regions with reduced and increased values of total enthalpy are observed in a time-averaged flow behind a bluff body.
This energy redistribution takes place both in the vortex formation region and in the developed vortex wake. The present
paper focuses on studying the effect of the structure of a vortex street on the intensity of energy redistribution. Two
approaches are used. The first one is direct numerical simulation of the flow behind a transversely oscillating cylinder,
which is known for a variety of vortex patterns in the wake. The simulations are based on a finite element solution of
the Navier-Stokes equations for a compressible perfect viscous gas. The second approach is based on simplified point
vortex models for infinite periodic vortex streets, which contain a finite number of vortex chains in equilibrium. It turns
out that these simple models make it possible to obtain satisfactory qualitative results, particularly if a more precise
approximation of velocity fields in the vortex cores (Rankine vortices) is implemented. It is shown that the effect of
energy redistribution significantly depends on the vortex structure, namely the mutual arrangement of the vortices and
their intensities. The estimates of the energy separation efficiency in the time-averaged flow are obtained for the general
case of an arbitrary number of chains. A more detailed analysis is performed for vortex streets with 2, 3, and 4 vortex
chains.

Keywords: energy separation, vortex street, point vortex model, total enthalpy, compressible flow, transversely
oscillating cylinder, heat transfer

1. Introduction

For a viscous-gas flow around a cylinder the phe-
nomenon of energy separation is manifested in the appear-
ance of regions with increased and reduced values of total
enthalpy in the wake. Such energy redistribution is ob-
served in both instantaneous and time-averaged flow pat-
terns. This problem has been discussed in quite a few
studies [1–7]. The interest in the phenomenon of energy
separation can be partially explained by the attempts to
make energy separation devices more efficient (see, for ex-
ample, the Ranque-Hilsch vortex tube and the Leontiev
tube [8–10]). Another reason for the increased attention
to the problem of energy separation in the wake behind
bluff bodies is the study of the Eckert-Weise effect, which
is manifested in low recovery temperature at the rear part
of a thermally insulated cylinder [11].

The lowest values of time-averaged total enthalpy are
observed in the vortex formation region and in the devel-
oped wake near its centerline [1, 7, 12]. From the energy
conservation law, it follows that in a fluid particle the to-
tal enthalpy can change due to the action of three mech-
anisms: the time-variation of pressure at a given point
in space; the work of viscous forces; and the heat release
due to the thermal conduction effect. The action of all
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these mechanisms should be taken into account in the vor-
tex formation region; however, in the developed wake it is
possible to consider only the first mechanism, related to
pressure variation [1, 7].

Since in the formed vortex wake the action of the mech-
anism related to pressure variation is most significant, the
process of energy redistribution can be approximately de-
scribed by the equation:

Di0
Dt

=
1
ρ

∂p
∂t
,

where i0, p, ρ, and t are total enthalpy, pressure, den-
sity, and time, respectively. In [1], the authors explained
how particles moving inside and outside the wake form a
pattern with reduced values of i0 near the wake center-
line. The main idea is that since the pressure inside the
vortices is less than that in the surrounding fluid, i0 de-
creases in the fluid particles moving in front of the vortex
and increases in the particles moving behind the vortex.
Due to the vortex street structure, fluid particles move in-
side/outside the wake in front of/behind the vortices. The
kinematical explanation was suggested based on a mod-
ified classical Kármán vortex street model (the Rankine
vortices were used instead of potential vortices). It was
shown, that the minimum of time-averaged total enthalpy
satisfies the equation

i0 − i0∞ = −
Γ0

l
(1 + U),
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Nomenclature

(u′′, v′′) velocity vector in coordinates (x′′, y′′)

(u′, v′) velocity vector in coordinates (x′, y′)

(u, v) velocity vector in coordinates (x, y)

(u1, u2) velocity vector in coordinates (x1, x2)

(x′′, y′′) vector of Cartesian coordinates fixed to
moving vortices

(x′, y′) vector of Cartesian coordinates, in which
the flow at infinity is at rest

(x, y) vector of Cartesian coordinates of the in-
ertial reference frame, the free stream ve-
locity is (1, 0)

(x1, x2) vector of Cartesian coordinates fixed to a
cylinder

M Mach number

𝒫,𝒜,𝒬 contributions of non-stationarity, viscous
forces, and thermal conductivity in the
total-enthalpy variation rate

Pr Prandtl number

Re Reynolds number

n unit normal vector

A amplitude of cylinder oscillations

CL lift coefficient

cV , cp specific heats at constant volume and
pressure

d cylinder diameter

E efficiency of energy separation

F normalized (to f ′0) frequency of cylinder
oscillations

f ′0 vortex shedding frequency for a fixed
cylinder

i unit imaginary number

I0 normalized total enthalpy

i0 total enthalpy

l period of the idealized vortex street along
the x axis

N number of vortex chains forming the ide-
alized vortex street

p pressure

T temperature

t time

U x-component of vortex velocity in coordi-
nates (x′, y′)

vc transverse velocity of the cylinder

Xin, Xout,Y distance from the center of the cylinder
to the inlet, outlet, and side boundaries
of the corresponding subdomains

yc y-coordinate of the cylinder center

zk complex coordinates of base potential vor-
tex for chain number k

αk normalized circulations Γk/Γ

β ratio lU/Γ

∆ approximate size of triangular elements of
the mesh

γ specific-heat ratio

Γk circulation of vortices in the chain number
k

κ thermal conductivity

τ viscous stress tensor

µ viscosity coefficient

ω vorticity

ρ density

ε energy

(·),i coordinate derivatives, i = 1, 2 corre-
sponds to x, y

(·),t time derivatives

0 stagnation (or total) parameters

∞ free-stream parameters
′ dimensional parameters

* transposition

(·) time-averaged value

where i0∞ is the total enthalpy in the free stream, Γ0 is the
absolute value of the vortex circulation, l is the period of
the vortex street along the x-axis, 1 + U is the velocity of
vortices in the reference frame fixed to the cylinder, and
the bar signifies time averaging.

The analysis of a time-averaged flow in [7] indicated that

the main reason for the variation of i0 is the appearance
of a negative correlation u′ · ∇i′0 induced by the pressure
variation due to the nonlinear term in the energy conser-
vation law. Here, u is the velocity vector, u′ = u − u, and
i′0 = i0 − i0.

The present study focuses on the influence of the vor-
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tex wake structure on the total-enthalpy distribution. De-
veloping the kinematical-explanation approach described
above, we apply both direct numerical simulations and
consider various equilibrium configurations of simplified
point vortex models for several vortex street structures.

We consider the problem of forced transverse oscillations
of a circular cylinder in a uniform flow based on the direct
numerical solution of Navier-Stokes equations by the finite-
element method (Section 2). This problem is known for
a variety of flow regimes in the wake. The diagram of
wake patterns can be found in [13, 14]. Among others it
contains 2S, P, 2P, and P+S modes. Here, the notation
of each mode describes how the cylinder sheds vortices
per one cycle of the oscillations (S and P mean a single
vortex and a pair of vortices respectively). In Section 3.1,
we consider flows at Re = 500, M = 0.4, Pr = 0.72 and
different frequencies and amplitudes of forced oscillations
to demonstrate the influence of the vortex street structure
on the time-averaged total enthalpy distribution.

In Section 3.2, several equilibrium configurations of
point vortex models are considered to estimate the influ-
ence of vortex structure on the energy separation efficiency.
The predictions based on these models are in good agree-
ment with the computation results, given the limitations
discussed in Section 3.2. We restrict our consideration to
vortex streets combined of 2, 3, and 4 infinite chains of
potential vortices. For the details of the properties of such
models see [15–19].

2. Problem formulation and numerical method

In the inertial reference frame (x, y), the circular cylinder
oscillates transversely in a uniform flow. The transverse
displacement of the cylinder is given by the expression
yc(t) = A sin(2π f t); here, A and f are amplitude and fre-
quency. The fluid surrounding the cylinder is described by
the model of a viscous perfect gas with constant specific
heats, viscosity, and thermal conductivity.

The problem is formulated in the Cartesian coordinate
system (x1, x2) fixed to the circular cylinder, with the
origin located at its center (see Fig. 5a). The Navier–
Stokes equations governing the compressible fluid flow are
solved in primitive variables Y(x, t) = (p, u1, u2,T )*; here, p,
u = (u1, u2)* and T are the dimensionless pressure, velocity
vector, and temperature; x = (x1, x2)*; and * is transposi-
tion. After the transition from the conservative variables
the Navier–Stokes equations can be written in the follow-
ing form

A0Y,t + AiY,i =
(︁
Ki jY, j − Pi

)︁
,i

+ R. (1)

The explicit expressions for matrices A0, Ai, Ki j and vec-
tors Pi, R (i, j = 1, 2) are given in Appendix A. The last
vector on the right-hand side arises due to the use of the
non-inertial reference frame. The repeated indices imply
summation, and the short notation for the derivatives is
used (·),t = ∂(·)/∂t, (·),1 = ∂(·)/∂x1, (·),2 = ∂(·)/∂x2.

Domain ∆ Xin Xout Y

Boundary layer 0.0005 - - -
Near wake 0.025 1.5 26 5
Middle wake 0.05 3 40 8
Far wake 0.25 6 80 16
Entire domain 2.5 200 400 200

Table 1: Parameters of the mesh. The number of nodes is Nv =

930930. The number of elements is Ne = 1861860. ∆ is the approxi-
mate size of triangular elements of the mesh, Xin, Xout, and Y are the
distances from the center of the cylinder to the inlet, outlet, and side
boundaries of the corresponding subdomains.

All quantities are dimensionless; nondimensionalization
is performed using the following formulas (here, dimen-
sional quantities are denoted by primes)

t =
u∞t′

d
, x =

x′

d
, p =

p′

ρ∞u2
∞

, u =
u′

u∞
, T =

cVT ′

u2
∞

.

The Reynolds Re, Prandtl Pr, and Mach M numbers are
defined by the following formulas:

Re =
ρ∞u∞d
µ

, Pr =
µcp

κ
, M =

u∞
c∞

.

Here, d is the diameter of the cylinder; ρ∞, p∞, u∞ are
the free-stream density, pressure, and velocity; κ, µ are
the thermal conduction and viscosity coefficients; cV , cp

are the specific heats at constant volume and pressure;
c∞ =

√︀
γp∞/ρ∞ is the sonic velocity in the free stream;

and γ = 1.4 is the specific heat ratio. Amplitude A and
frequency f of cylinder oscillations are also dimensionless:
A = A′/d, f = f ′d/u∞. In what follows, we will use the
dimensionless parameter F = f ′/ f ′0 instead of f ; here, f ′0 is
the vortex shedding frequency for a fixed cylinder.

In the non-inertial reference frame, the following bound-
ary conditions are assumed. On the cylinder surface, the
velocity no-slip u = (0, 0) and adiabatic-wall ∇T ·n = 0 con-
ditions are prescribed (here, n is a unit normal vector). At
infinity, u = (1,−vc), p = 1/(γM2), and T = 1/[γ(γ − 1)M2],
where vc = yc,t.

For numerical solution of this problem, we use the
Galerkin least-squares (GLS) finite-element method on
unstructured triangular meshes. The algorithms used
have been successfully applied to the simulation of sev-
eral problems of compressible and incompressible viscous
flows around bodies (for details, see [7, 20, 21]).

Table 1 shows the parameters of the mesh used, which is
divided into several nested subdomains with different step
sizes. The results of algorithm testing for similar regimes
of the flow can be found in [7]. In this study, we enlarged
the region of ‘Near wake’ along and across the flow, since
here we consider wider wakes due to cylinder oscillations
and also because we are interested in the development of
the wakes at longer distances downstream.

The numerical results in following section are restricted
to Re = 500. This Reynolds number was chosen to reduce
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Fig. 1: The dependence of lift coefficient CL on cylinder displacement
yc for limit cycle at F = 0.89, A = 0.25, Re = 500. The dashed line is
data from [22] and the solid line is the present results (M = 0.1 and
Pr = 0.72).

the viscous diffusion effect and to obtain periodic regimes
of a two-dimensional compressible flow (M = 0.4) around
a fixed cylinder. In [7] (Figs. 10-12) it was shown that at
Re ≥ 500 the effect of the Reynolds number is not as pro-
nounced as at Re < 500. It should be noted, that the real
flow at Re = 500 is three-dimensional and turbulent. How-
ever, we believe that the described mathematical model
takes into account enough underlying physics to qualita-
tively demonstrate the influence of a vortex street on the
efficiency of energy separation (Section 3.1) and to study
the adequacy of simplified point vortex models predicting
the efficiency of this process in a developed wake (Sec-
tion 3.2). In [22] the incompressible two-dimensional flow
past an oscillating cylinder at Re = 500 and A = 0.25 was
studied. Figure 1 demonstrates the agreement in the lift
coefficient CL(yc) with these results at Re = 500, F = 0.89,
A = 0.25. Figure 2 shows the transition between two vor-
tex shedding regimes at Re = 200 and F = 1.01: 2S mode
at A = 0.6 and P+S mode at A = 0.8. These results are in
agreement with the data in [14], where it was shown that
the boundary amplitude A between two modes is approx-
imately 0.7 (see Fig. 5a and 7 in [14]).

3. Energy redistribution for different wake pat-
terns

Total enthalpy i0 is considered in the coordinates (x, y) =

(x1, x2 + yc) (u = u1, v = u2 + vc): the cylinder has zero x-
component of the velocity and performs only transverse
oscillations. We define normalized total enthalpy I0 by the
expression

I0(x, y, t) =
i0 − i0∞

i0∞
, i0(x, y, t) = γT + 0.5

(︁
u2 + v2

)︁
, (2)

and introduce the time-averaged flow parameters denoted
with the bar: f (x, y) = (t2 − t1)−1

∫︀ t2
t1

f (x, y, t)dt, for some
function f (x, y, t) and long enough time interval t2 − t1, ex-
cluding initial stages of flow development. In the present
work, time-averaged distributions were obtained by aver-
aging over the intervals not less than 215 (approximately

(a) A = 0.6

(b) A = 0.8

(c) Color map for ω

Fig. 2: The transition from 2S (a) to P+S (b) shedding mode in the
wake at F = 1.01, Re = 200, M = 0.1 and Pr = 0.72. Limit values on
the color map are not the maximum and minimum of function ω:
function values greater than the upper limit (or less than the lower
limit) are filled with one color corresponding to this limit. (For the
interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

48 vortex shedding periods for a fixed cylinder) with the
time step being equal to 0.2. The minimum value of the
normalized total enthalpy in the time-averaged flow is con-
sidered as the indicator of energy separation efficiency

E(Ω) =

⃒⃒⃒⃒⃒
min

(x,y)∈Ω
I0(x, y)

⃒⃒⃒⃒⃒
.

The value of E depends on the flow subregion Ω under con-
sideration, for example, it could be the vortex formation
region or some parts of the developed wake.

The equation for the total-enthalpy variation in the co-
ordinates (x, y) can be written as follows:

Di0
Dt

=
1
ρ

∂p
∂t⏟ ⏞ 
𝒫

+
1
ρRe
∇ · (τ · v)⏟            ⏞            
𝒜

+
1

ρRePr
∇2T⏟        ⏞        
𝒬

. (3)

Here, D/Dt = ∂/∂t + v · ∇ is the material derivative and
v = (u, v)*. The description of the contribution of each
term in the equation for a fixed cylinder can be found
in [7]. The reason for energy redistribution in the devel-
oped wake is related to the nonlinearity in the left-hand
side of Eq. (3) and to the action of term 𝒫, whereas the
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(a) Fixed cylinder (b) A = 1, F = 0.5

(c) A = 0.25, F = 0.7 (d) A = 0.75, F = 0.7

(e) A = 0.5, F = 1 (f) A = 1, F = 1

(g) Color map for I0

Fig. 3: The influence of the wake structure on the time-averaged total enthalpy distribution I0 at Re = 500, M = 0.4 and Pr = 0.72. Here,
solid and dashed lines correspond to positive and negative constant values of vorticity ω = ±0.5 at an arbitrary instant of time. (For the
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

other terms (𝒜,𝒬) are negligible in the wake [1, 4, 7]. The
pressure fields in the wake are mainly determined by vor-
tex dynamics. That is why we are interested in studying
the effect of vortex street structures on the energy redis-
tribution. This section demonstrates the influence of the
wake pattern on the efficiency of energy separation based
on both direct numerical simulation and simplified point
vortex modeling of the wake.

3.1. Total-enthalpy distribution for a transversely oscillat-
ing cylinder

Transverse oscillations of the cylinder cause energy
transfer between the flow and the cylinder. For a period

of time t1 ≤ t ≤ t2, it can be expressed by the coefficient

CE =

∫︁ t2

t1
CLvcdt. (4)

Equation (4) expresses the work done by the fluid. If
CE < 0, energy transfers from the cylinder to the fluid,
and vice versa. In the first case (CE < 0), the shedding
vortices tend to suppress the cylinder oscillations, and in
the second case (CE > 0) they tend to strengthen these
oscillations. In this section, we consider the regimes with
CE < 0.

In Fig. 3 we present the averaged distribution of to-
tal enthalpy for different frequencies F and amplitudes A,
and also the isolines ω = ±const for a certain instant of

5



time. The wake structure turns out to be mostly irregu-
lar; however, in most cases the time-averaged flow fields
have reflective symmetry with respect to the wake center-
line y = 0. The loss of symmetry is clearly observed for
A = 1, F = 0.5 and A = 0.75, F = 0.7 (Fig. 3b, d). At
A = 0.75 and F = 0.7 (Fig. 3d), the vortices are shed in ac-
cordance with the P+S scheme: a single vortex on one side
and a pair of vortices on the other. Therefore, as a result
of averaging, the region of reduced total enthalpy is shifted
away from the centerline. At A = 1 and F = 0.5 (Fig. 3b),
the widest region of lowered I0 is observed among the con-
sidered regimes. The vortex dynamics is complicated and
it is difficult to construct the pattern in this case. Most of
the time, the vortices are shed in pairs, but their trajecto-
ries are complex and differ from one cycle to another.

From Fig. 3, it is clear that when the vortices of opposite
signs move with lesser transverse distance, smaller values
of E are attained (in the general case, it is not true, see
Section 3.2). For example, see Figs. 3a, c, e for x . 12
and x & 12; and Figs. 3d, f for x . 6 and x & 6. Another
finding is the following: if the positive vortex moves above
(at a greater y value than) the negative one, then the value
of I0 between them is positive, and vice versa. Such thin
bands of positive I0 are clear in Figs. 3d, e, f for the re-
gions of motion of some vortex pairs. These features can
be explained using the simplified point vortex models; see
Section 3.2.

Particular attention should be paid to the effect shown
in Fig. 3a: after the change in the wake structure the min-
imum value of the total enthalpy (E ≈ 0.034) becomes
closer to its values in the formation region (E ≈ 0.044),
while the region of reduced values is much larger. This
effect is attributable to changing the vortex structure. In
the next section, it will be considered in more detail.

As the amplitude of oscillations becomes high enough,
the formation region is no longer the region with minimal
values of I0. Moreover, in this region much greater val-
ues of I0 can be attained (max I0 ≈ 0.045 for A = 1 and
F = 1, see Fig. 3f). For a fixed cylinder, on the contrary,
the smallest values are usually observed in this region. As
shown numerically for a fixed cylinder [7], the region re-
sponsible for the decrease in I0 in the vortex formation zone
does not affect the decrease of I0 in the developed vortex
street. It is related to the formation of recirculation zones
near the body in the time-averaged flow fields, where the
lowest values of I0 are observed; see, for example Fig. 4a. If
the oscillation amplitude A is not high, there are still some
recirculation zones in the time-averaged flow in which one
can find the minimum of I0 (Fig. 4b). However, when A
is high enough the time-averaged recirculation zones dis-
appear (Fig. 4c) and the mechanisms [7] of reduction of
I0 in the formation region are absent. Thus, the minimal
values of I0 are not observed in the formation region in
Figs. 3b, d-f and Fig. 4c. Another consequence of this is
that the distribution of I0 in the formation region has a
greater impact on I0 in the developed wake (in terms of
analysis of the time-averaged mechanisms [7]).

(a) Fixed cylinder

(b) A = 0.25, F = 0.7

(c) A = 0.75, F = 0.7

(d) Color map for I0

Fig. 4: Time-averaged total enthalpy distribution I0 and streamlines
at Re = 500, M = 0.4 and Pr = 0.72. (For the interpretation of the
references to color in this figure legend, the reader is referred to the
web version of this article.)

Among the regimes considered in Fig. 3, in the devel-
oped wake the value of E has its maximum for a fixed
cylinder, E ≈ 0.035. With the increase in amplitude A
at F = 1, the efficiency decreases (E ≈ 0.033 at A = 0.5
and E ≈ 0.031 at A = 1), but for A = 0.5 the area of
the region of reduced I0 is maximal. The same behavior
can be observed for F = 0.7 (E ≈ 0.039 at A = 0.25 and
E ≈ 0.026 at A = 0.75). It should be noted that the data
presented are not sufficient to make definitive conclusions
on the influence of A or F.
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Fig. 5: Schemes for different coordinate systems (a) and for one period of the considered point vortex models with N = 2, 3 and 4 (b-d).

3.2. Estimates of energy separation efficiency based on the
point vortex models

Since the main mechanism of energy separation in the
developed wake is the time variation of pressure, it is pos-
sible to estimate the effect of the vortex wake structure on
the energy separation efficiency using a simplified model
of a vortex wake formed by potential vortices. A similar
analysis was carried out earlier for the classical staggered
Kármán street [1]. To be complete, we repeat the assump-
tions required for calculating I0.

The flow is assumed to be inviscid and non-heat-
conducting. It is further assumed that the wake has a
longitudinal period l; vortices in the wake move with con-
stant velocity 1 + U along the x-axis (velocity at infinity
is 1 in dimensionless variables), which is greater than zero
and less than 1, so −1 < U < 0. We introduce the following
coordinate systems (Fig. 5a).

O1: The flow at infinity is at rest, i.e.

x′ = x − t, y′ = y − y0, where y0 is constant;
u′(x′, y′, t) = u(x′ + t, y′ + y0, t) − 1,
v′(x′, y′, t) = v(x′ + t, y′ + y0, t).

O2: The flow in the wake is stationary, i.e.

x′′ = x − (U + 1)t, y′′ = y − y0;
u′′(x′′, y′′) = u(x′′ + Ut + t, y′′ + y0, t) − (U + 1),
v′′(x′′, y′′) = v(x′′ + Ut + t, y′′ + y0, t).

In O2 the flow is stationary, so the total enthalpy
i′′0 = γT + 0.5(u′′2 + v′′2) is constant along streamlines; we
assume that this constant is the same for any streamline
(for example, for isentropic irrotational flow). Thus, using
the value of i′′0 at infinity,

i′′0 (x′′, y′′) = γT + 0.5(u′′2 + v′′2) = γT∞ + 0.5U2. (5)

Here, T∞ is the dimensionless temperature at infinity, and
γT∞ = i0∞ − 0.5. Excluding temperature T from Eqs. (2)
and (5), one can obtain the following expression.

i0(x, y, t) − i0∞ = (1 + U)(u − 1).

For theoretical estimations in the present section purely
periodic flows are considered, hence, in the definition of
time-averaging (given in the beginning of Section 3) t2 − t1
equals one time period. Moreover, time-averaging coin-
cides with spatial averaging along the x axis and

u(y) =
1

t2 − t1

t2∫︁
t1

u(x, y, t)dt = U + 1 +
1
l

ξ+l∫︁
ξ

u′′(ξ, y − y0)dξ,

u′(y′) =
1

t′2 − t′1

t′2∫︁
t′1

u′(x′, y′, t)dt = U +
1
l

ξ+l∫︁
ξ

u′′(ξ, y′)dξ.

Here, (U + 1)(t2 − t1) = U(t′2 − t′1) = l. Hence,

I0(y) =
(1 + U)

i0∞
u′(y − y0). (6)

The efficiency of energy separation equals E = (1 +

U)|u′min|/i0∞, where u′min = miny′ u′(y′).
Thus, to estimate the energy separation efficiency, it

is necessary to construct the velocity fields for different
configurations of a periodic vortex wake. For this purpose,
we use the point vortex models of the wake, which were
studied previously in numerous works; see, for example,
[15–19].

It is worth giving a few comments on the applicability of
these models. The point vortex models do not reflect the
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shape of the vortices and predict incorrect velocity distri-
bution in the vortex cores (additional remarks on it will
be made in the next subsection). In addition, the consid-
ered model does not reproduce a variation in the mutual
arrangement of the vortices. Partially it could be taken
into account by considering non-equilibrium regimes; see,
for example, [17]. Not all of the considered configurations
are stable and can be realized in nature [15, 17, 18]. More-
over, this model assumes that the fluid is incompressible,
and the compressibility effects could change some param-
eters of the flow. For example, in [23] one can find the-
oretical estimates of variations in U for a weakly com-
pressible fluid. Finally, viscous diffusion is absent in the
point-vortex model. Nevertheless, these models provide a
very convenient tool for understanding the general ways
of increasing/decreasing the energy separation effect by
changing the intensity and mutual arrangements of vor-
tices.

In a general case, let there be a periodic vortex wake
with a longitudinal period l, which is formed by N infinite
chains of vortices, see Fig. 5b-d. In each chain, we denote
the complex-valued coordinates of the vortices defining the
mutual position of the chains by zk = x′k + iy′k, k = 1, ...,N.
The velocity field created by a system of point vortices is
given by

u′ − iv′ =

N∑︁
k=1

Γk

2li
cot

π

l
(z − zk).

Using this equation, one can obtain the expression for u′:

u′ = −

N∑︁
k=1

Γk

2l
sgn(y′ − y′k). (7)

The velocity of each vortex zα is determined from the
relation

u′α − iv′α =

N∑︁
k=1,k,α

Γk

2li
cot

π

l
(zα − zk). (8)

For equilibrium solutions, the positions of the vortices rel-
ative to each other do not change, so

u′α = U, v′α = 0,
N∑︁

k=1

Γk = 0. (9)

Here, we use the fact that the motion occurs along the
x-axis with velocity U < 0. The last relation in Eqs. (9)
is obtained from the first two conditions after multiplying
by Γα Eq. (8) and summing over index α.

We introduce the following parameters, which charac-
terize the flow: β = lU/Γ < 0 and αk = Γk/Γ, Γ =

|Γ1| + |Γ2| + ... + |ΓN |, α1 + α2 + ... + αN = 0, k = 1, ...,N.
If αk and β are given, one can obtain a solution (or so-
lutions) of Eqs. (8) and (9), which defines certain mutual
arrangement of vortices up to scaling l. From Eqs. (6) and
(7) we have

I0 = −
Γ

2li0∞
(1 + β

Γ

l
)

N∑︁
k=1, k,m

αk[sgn(y′ − y′k) − sgn(y′ − y′m)]

for any m = 1, 2, ...,N. For any fixed mutual arrangement of
vortices up to scaling l, with given αk and β, the maximum
of E (the minimum of I0) is attained for βΓ/l = −0.5 (since
positive factor (Γ/l)(1 + βΓ/l) is maximal), i.e.

E =
Γ

4li0∞
max

y′

⎧⎪⎪⎨⎪⎪⎩ N∑︁
k=1, k,m

αk[sgn(y′ − y′k) − sgn(y′ − y′m)]

⎫⎪⎪⎬⎪⎪⎭ .
Since

∑︀N
k=1 |αk | = 1 and the absolute value of the expression

in square brackets is less than 2, the following estimate is
valid

E ≤
Γ

2li0∞
min

k
(1 − |αk |) ≤

Γ(N − 1)
2li0∞N

= −
N − 1

4βi0∞N
. (10)

Furthermore, since i0∞ > 0.5 (in our calculations M = 0.4
and i0∞ = 129/8), E ≤ Γ(N − 1)/(lN).

We can use Rankine vortices instead of potential ones to
better approximate the velocity field in the vortex cores.
Despite the fact that the flow inside vortex cores is no
longer irrotational, we still assume that Eq. (6) is approx-
imately valid. It is true if

∫︀ ξ+l
ξ

i′′0 (ξ, y′)dξ/l ≈ i′′0∞ (for ex-
ample, if i′′0 (x′, y′) = i′′0∞, as was assumed above). Thus,
one should modify only the expression for u′, instead of
Eq. (7),

u′ =

N∑︁
k=1

Γk

2l
sgn(y′ − y′k)

⎡⎢⎢⎢⎢⎢⎢⎢⎣θk(y′)
2
π

arctan

√︃(︃
Rk

y′ − y′k

)︃2

− 1 − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−

N∑︁
k=1

Γk

πl
θk(y′)

y′ − y′k
Rk

√︃
1 −

(︃
y′ − y′k

Rk

)︃2

.

(11)

Here, Rk is the radius of the core of vortices in k-chain and
θk(y′) equals 1 if (y′ − y′k)2 < R2

k , otherwise it is zero. This
function is continuous, unlike the case of potential vortices
for which it is piece-wise constant.

Below, we consider three cases shown in Fig. 5b-d: clas-
sical symmetric and staggered Kármán streets with N = 2,
equilibrium configurations of three vortices with N = 3,
and a symmetric wake with N = 4.

3.2.1. N=2
Let us introduce additional notations for this subsection

(Fig. 5b): Γ1 = −Γ2 = Γ0 = 0.5Γ > 0 and z2 − z1 = b + ih,
where b, h ≥ 0. For symmetric (b = 0) and staggered
(b = 0.5l) Kármán streets, one can obtain

E =

⎧⎪⎪⎨⎪⎪⎩ Γ
2li0∞

(︁
1 − Γ

4l coth πh
l

)︁
, b = 0,

Γ
2li0∞

(︁
1 − Γ

4l tanh πh
l

)︁
, b = 0.5l,

(12)

due to the fact that u′min = −Γ0/l at y′1 < y′ < y′2 and
U = −(Γ0/2l) coth(πh/l) or U = −(Γ0/2l) tanh(πh/l) for a
symmetric or a staggered Kármán street. In terms of the
previous analysis, α1 = −α2 = 0.5 and β = −0.25 coth(πh/l)
or β = −0.25 tanh(πh/l) for a symmetric or a staggered
Kármán street.
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Let us now consider the effect of parameters in Eq. (12)
on the energy separation efficiency. When other parame-
ters are fixed, the optimal value of Γ/l is 2 tanh(πh/l) (b = 0)
or 2 coth(πh/l) (b = 0.5l). The smaller the transverse dis-
tance between vortices h, the more intense is the energy
separation for a staggered Kármán street, with the max-
imum effect E = Γ/(2li0∞) being attained at h = 0. For
a symmetric wake, on the contrary, as the transverse dis-
tance decreases, the intensity decreases. The maximum
efficiency (at h→ +∞) is equal to the minimum for a stag-
gered Kármán street: E = Γ/(2li0∞) [1 − Γ/(4l)].

A vivid example of the effect of a staggered wake struc-
ture with N = 2 on E is clearly seen in Fig. 3a. Upstream
and downstream from x ≈ 12, the wake structure is differ-
ent and E is significantly different. To estimate the param-
eters, we choose two vortices upstream (6 < x < 10) and
two vortices downstream (16 < x < 18). Thus, upstream
l ≈ 3.7, h ≈ 0.29 (Γ0 ≈ 3.8), and downstream l ≈ 2.8,
h ≈ 2.12 (Γ0 ≈ 2.86). The calculations of E using Eq. (12)
give (i0∞ = 129/8)

Upstream: E = 0.056 (U = −0.12, u′min = −1.03),

Downstream: E = 0.032 (U = −0.50, u′min = −1.02).

The result is that the efficiency decreases, which contra-
dicts the direct numerical simulations in Fig. 3a. This can
be explained by the following. The point vortex model
does not describe correctly the velocity fields near the vor-
tex cores. When the vortices in the upstream part of the
wake are located near the centerline, this drawback of the
model does not allow one to achieve qualitatively correct
values of u′min and, hence, correct values of E. However,
for the downstream part of the flow it is not a problem.
Indeed, from the numerical results, we have:

Upstream: E = 0.013 (U = −0.2, u′min = −0.3),

Downstream: E = 0.034 (U = −0.4, u′min = −0.97).

We can see that the main discrepancy with the model is
in u′min upstream. Downstream parameters are in good
agreement. It is possible to obtain much better agreement
in the upstream wake if we replace the point vortices in the
model by Rankine vortices (Eq. (11)), giving E ≈ 0.020,
u′min ≈ −0.38 (U = −0.12). An approximate value for the
vortex core radius was taken equal to 0.5 in accordance
with the numerical results.

As shown above, when the Rankine vortices are used
to approximate the velocity field it is possible to obtain
a general expression for I0 and efficiency E. When con-
sidering Eq. (11) with N = 2, one can see that if h/2 is
greater than the vortex core radius R, then E is the same
as for the potential vortices and increases with decrease
in h. However, if h < 2R the value of E decreases to zero
with h → 0. Thus, one can expect that in a real flow for
fixed Γ0, l,R the efficiency of energy separation E has its
maximum when h is close to 2R.

Let us also compare the numerical results for this case
with the maximal possible efficiency predicted by the

model (Eq. (10)): Emax ≈ 0.032 upstream and downstream
(since Γ/l is almost equal). This value is close to E in
the real flow downstream, because the vortex cores have a
smaller impact on the time-averaged velocity field.

This comparison shows that the point vortex models
make it possible to estimate values of E if the vortex cores
are located far enough from the region of minimum values
of I0. In case they are not, one can improve the estimate
by the replacement of point vortices with Rankine vor-
tices. When vortex cores are less involved in the formation
of the time-averaged velocity field inside the region with
minimum values of I0, the efficiency of energy separation
is greater.

As noted above, for a symmetric vortex street E in-
creases with h. That is what we observed in Section 3.1, for
example, in Fig. 3d. One can approximate the vortex wake
fragment in Fig. 3d at 4 < x < 9 by a symmetric vortex
street: from averaging using four vortices l ≈ 3.9, h ≈ 2.5
and Γ0 ≈ 4.2. From the model (Eq. (12)) E ≈ 0.03 which is
in qualitative agreement with the calculations E ≈ 0.026.

3.2.2. N=3
We assume that Γ1,Γ2 ≥ 0, Γ1+Γ2 = −Γ3 = Γ0 = 0.5Γ > 0,

and α0 = Γ2/Γ1 ≤ 1 (Fig. 5c). Without loss of generality,
we assume that z3 = 0 and −0.5 ≤ x′1/l < 0.5, −0.5 ≤ x′2/l <
0.5. We consider the equilibrium configurations [19], which
satisfies the relations:

cot
πz1

l
=
±α0

√︁
3β2

0 − 1 − i(α0 + 2)β0√︁
α2

0 + α0 + 1
= a1 + ib1,

cot
πz2

l
=
∓

√︁
3β2

0 − 1 − i(2α0 + 1)β0√︁
α2

0 + α0 + 1
= a2 + ib2.

(13)

Here, β0 = lU/S = βΓ/S , S = 0.5Γ

√︁
α2

0 + α0 + 1/(α0 + 1).
The solution is determined by two parameters: α0 and β0.

For 3β2
0 > 1, different signs in Eqs. (13) correspond to the

solutions which are symmetric about x′ = 0. We choose
‘+’ in the first equation and ‘−’ in the second equation.
Figure 6 shows the relative positions of the vortices for
different parameters α0 and β0.

The minimum value of u′min = −Γ/(2l) is attained for
max(y′1, y

′
2) < y′ < y′3, and the efficiency of energy separa-

tion is
E =

Γ

2li0∞

(︃
1 + β

Γ

l

)︃
,

For the considered case

β = β0

√︁
α2

0 + α0 + 1

2(α0 + 1)
< −

1
4
.

β→ −1/4 as β0 → −1/
√

3 and α0 = 1. Thus

E <
Γ

2li0∞

(︃
1 −

Γ

4l

)︃
.
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Fig. 6: The positions of the vortices for different parameters α0 and β0. Dashed and solid lines are the isolines of α0 = const and β0 = const.
Thick and thin lines correspond to the positions of the first and second vortices. Circles show an example of a mutual arrangement of vortices
for α0 = 0.1 and β0 = −0.7.

If 3β2
0 ≤ 1, then the real part of the cotangent is equal

to 0, therefore the possible values of x′1, x
′
2 are 0, −l/2. We

consider only the case when the factor (1 + U) is maximal,
i.e. U = 0 and β = 0. The first and second vortices are
located on both sides of the axis y′ = 0 (we assume that
y′1 < 0). Thus, the efficiency of energy separation is

E =
Γ

2li0∞(1 + α0)
.

The value α0 = 0 corresponds to a staggered vortex street
with N = 2 and h = 0. Otherwise, the scheme is less
efficient.

3.2.3. N=4
We consider a symmetric 2P wake (Fig. 5d), which can

be observed behind a pair of cylinders. The point vortex
models for these configurations were studied in [18]. We
consider the following case: Γ1 = −Γ4 > 0, Γ3 = −Γ2 > 0,
Γ3 < Γ1 and x′1 + iy′1 = x′4 − iy′4, x′2 + iy′2 = x′3 − iy′3, z2 − z1 =

−l/2+ih, z3−z2 = i(H−h), H > h > 0. Thus, α1 = −α4 > 0.25
and α3 = −α2 < 0.25. Since 2(α1 +α3) = 1, we can use only
one parameter α = 2α3 < 0.5, which is equal to parameter
γ in [18].

Let us discuss the possibility of increasing the efficiency
of energy separation in such configurations, as compared
to the classical vortex street (N = 2). To be able to com-
pare the results for N = 2 and N = 4, we assume that Γ0
from Section 3.2.1 equals (Γ1 + Γ3)/2. As the distance H/l
between two vortex streets tends to +∞ (α→ 0.5, see [18])
Γ1 and Γ3 tend to Γ0, so this assumption makes sense.

The minimal value of u′ is attained for y′1 < y′ < y′2
and y′3 < y′ < y′4. It equals −Γ1/l, which is not greater

than the value −Γ0/l for N = 2. Although |u′min| for N = 4
is greater than for N = 2, to make a conclusion about
efficiency E one should take into account the velocities of
vortices, i.e. the factor (1 + U). In Fig. 7, we plotted −1 <
U < 0 and lines ∆E = E(N=4) − E(N=2) = const as functions
of h/l and H/l at fixed Γ0/l = 0.1 (Fig. 7a) and 1 (Fig. 7b).
These examples demonstrate the possibility to obtain ∆E
of different signs. It seems particularly interesting that
theoretically the creation of two vortex streets can improve
the efficiency of energy separation (∆E > 0 at Γ0/l = 0.1 in
Fig. 7a).

4. Conclusions

In the present study, a clear link between the structure
and intensity of a vortex street in a wake behind an os-
cillating cylinder and the efficiency of energy separation is
demonstrated. Possible ways to improve energy separation
efficiency in the wake are investigated. The study is based
on both direct numerical simulations of the wake behind a
transversely oscillating cylinder within the Navier-Stokes
equations and the use of simplified point vortex models of
vortex streets with different configurations.

It is demonstrated that the lowest values of time-
averaged total enthalpy observed near the centerline of the
developed wake can be significantly changed by the varia-
tion in the amplitude and frequency of forced oscillations.
Pronounced changes in the area of the region of reduced
total enthalpy in the wake can also be achieved. These
effects are attributable to the formation of qualitatively
different vortex structures in the wake. The appearance
of reversed vortex pairs (with the positive vortex located
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(a) Γ0/l = 0.1 (b) Γ0/l = 1

Fig. 7: The values of U (filled plot) at N = 4 for different mutual arrangement of vortices and the difference ∆Ei0∞ (solid lines) between the
efficiency of energy separation for N = 4 and N = 2. Γ0/l is fixed and equals 0.1 (left plot) and 1 (right plot). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

above the negative one) leads to the development of re-
gions with increased total enthalpy.

The velocity fields for different vortex street structures
were approximated by point vortex models, consisting of
2, 3, and 4 infinite periodic vortex chains in the equilib-
rium state. Based on this approximation of the velocity
fields, the distribution of total enthalpy was obtained. This
approach makes it possible to easily estimate the maxi-
mum efficiency of energy separation due to pressure oscil-
lations in the wake. For instance, in the general case of N
vortex chains in the street for any fixed mutual arrange-
ment of vortices the maximum possible efficiency is equal
to Γ(N − 1)/(2li0∞N) for relative velocity of vortices equal
to 0.5. The fixed arrangement here means the freezing of
vortex locations (with respect to a characteristic length l),
which takes place at constant normalized vortex circula-
tions αk and coefficient β = Ul/Γ.

It is demonstrated that the point vortex models can pre-
dict the energy separation efficiency well if the motion of
vortex cores occurs outside the region considered. Other-
wise, the results of the model can be improved using the
Rankine vortices instead of the potential ones, since the
main discrepancy is caused by an incorrect velocity distri-
butions inside the vortex cores. Using the improved model
for a staggered Kármán street, it was shown that the max-
imum efficiency of energy separation can be achieved when
the transverse distance between opposite vortices is close
to the vortex core diameter. This model was successfully
used to simulate the effect of a significant increase in en-
ergy separation efficiency due to the natural restructuring
of the vortex street in the wake behind a fixed cylinder.

For a symmetric Kármán street, the efficiency is re-
stricted by the minimum value of efficiency for the stag-
gered arrangement. In contrast to the staggered arrange-
ment, the efficiency increases with the increase in the
transverse distance between vortices.

The theoretical results show the possibility to increase
the efficiency of energy separation by creating side-by-side
Kármán vortex streets. This configuration can be formed,
for example, behind a pair of cylinders placed far enough
from each other.

It should be noted that all the results are obtained using
two-dimensional models. For a quantitative description of
energy separation in the real flows one should take into ac-
count three-dimensional effects, turbulence, and, probably,
the dependence of the viscosity and thermal conduction co-
efficients on temperature. Nevertheless, the present study
provides preliminary estimate of the influence of particular
vortex structures on energy separation due to the pressure
variation mechanism.
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Appendix A. The Navier–Stokes equations in
primitive variables

The matrices in Eq. (1) take the following form:
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A0 =
1

(γ − 1)T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 −

p
T

u1 p 0 −
pu1
T

u2 0 p −
pu2
T

ε pu1 pu2 −
p|u|2
2T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

Ai =
1

(γ − 1)T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ui pδ1i pδ2i −

pui
T

uiu1 pui(1 + δ1i) pu1δ2i −
puiu1

T
uiu2 pu2δ1i pui(1 + δ2i) −

puiu2
T

uiε puiu1 + δ1i pε puiu2 + δ2i pε −
pui |u|2

2T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

K11=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 4

3Re 0 0
0 0 1

Re 0
0 4u1

3Re
u2
Re

γ
PrRe

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, K12=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 − 2

3Re 0
0 1

Re 0 0
0 u2

Re −
2u1
3Re 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

K21=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 1

Re 0
0 − 2

3Re 0 0
0 −

2u2
3Re

u1
Re 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, K22=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 1

Re 0 0
0 0 4

3Re 0
0 u1

Re
4u2
3Re

γ
PrRe

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Pi = p (0, δ1i, δ2i, ui)* , R = −ρvc,t (0, 0, 1, u2)* .

Here, ε = T +0.5|u|2, δi j is Kronecker delta, i = 1, 2, j = 1, 2.
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