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Abstract

Based on direct numerical simulation of two-dimensional Navier–Stokes equations, the effect of energy separation in
unsteady vortex flows is investigated with the reference to the problem of a compressible viscous flow past a thermally
insulated circular cylinder. The range of Reynolds (Re ≤ 103), Prandtl (0.1 ≤ Pr ≤ 10) and Mach (M ≤ 0.6) numbers
considered corresponds mainly to the periodic vortex shedding regime. The energy separation, associated with the vortex
shedding process, manifests itself in the appearance of cold and hot (in terms of total temperature) spots in the near
wake. The main attention is focused on the comparative analysis of different mechanisms of total-enthalpy variation in
a fluid particle moving around the cylinder, such as the action of viscosity, thermal conductivity, and unsteadiness of
the flow. It is shown that the time-averaged total-enthalpy stratification in the boundary layer is caused by dissipative
mechanisms. In the vortex formation region and in the vortex street, a decrease in the time-averaged total enthalpy is
attributable mainly to the streamline oscillations. The known Eckert–Weise effect of low equilibrium temperature at the
rearmost stagnation point of the cylinder is associated with the non-uniformities in the temperature and density fields,
created by the evolution of recirculation zones near the body surface. For both instantaneous and time-averaged flow
patterns, the regions of local increase and decrease in the total enthalpy are distinguished. It turned out that, in the
time-averaged flow, the region responsible for the total-enthalpy decrease in the vortex formation zone does not affect
the decrease in the total enthalpy in the developed vortex wake, and vice versa.

Keywords: energy separation, total enthalpy, unsteady vortex flows, near wake, boundary layer, time-averaged flow,
thermally insulated cylinder, Navier–Stokes equations

1. Introduction

The interest in the process of energy separation in com-
pressible gas flows is associated with the practical need
for devices capable of separating a gas flow into cold and
hot streams (with low and high total temperatures) with-
out mechanical work or external heat supply. For the first
time, such a device was proposed in the early 1930-s by
G.Ranque and was called a vortex tube (Ranque–Hilsch
vortex tube) [1]. A review of later research on Ranque–
Hilsch vortex tubes can be found in [2]. A Ranque–
Hilsch vortex tube may ensure an appreciable difference
in the stagnation temperatures of the outlet cold and hot
streams but has a serious disadvantage associated with too
high losses of the total pressure. An alternative scheme
of machine-free energy separation, the so-called Leontiev
tube [3, 4], is devoid of this disadvantage but ensures much
smaller efficiency of energy separation. This scheme is
based on heat transfer between high-speed (usually super-
sonic) and low-speed (subsonic) streams having identical

*Corresponding author.
Email addresses: aleksyuk@mech.math.msu.su (Andrey I.

Aleksyuk), osiptsov@imec.msu.ru (Alexander N. Osiptsov)

stagnation parameters and separated by a thin wall with
a low thermal resistance. At present, different methods
of enhancing the efficiency of scheme [3] are under study.
Among them are: the use of a perforated partition wall, a
slot or distributed gas injection or suction on the wall, the
creation of a relief on the wall, addition of an admixture
of small droplets evaporating in the supersonic boundary
layer [5], etc. The main aim of all these methods is to
reduce the recovery temperature in the high-speed bound-
ary layer, which then may result in an increase in the heat
fluxes through the partition wall and enhancement of en-
ergy separation.

In this regard, of substantial interest is the well-known
Eckert–Weise effect of low recovery temperature on the
rear part of the surface of a thermally insulated cylinder
immersed in a compressible gas flow, detected experimen-
tally in the early 1940-ies [6].

The Eckert–Weise effect is commonly associated with a
non-stationary vortex shedding process. This connection
was suggested by L.F.Ryan [7] and since then has been
studied in a number of works, most of which were exper-
imental (see, for instance, [7–14]). In an extensive study
[9], the authors showed that the intensification of the vor-
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Nomenclature

M Mach number

𝒫,𝒜,𝒬 contributions of non-stationarity, viscous
forces, and thermal conductivity in total-
enthalpy variation rate

Pr Prandtl number

Re Reynolds number

St Strouhal number

n unit normal vector

u velocity vector (u, v)

x vector of Cartesian coordinates (x, y)

CD drag coefficient

CL lift coefficient

cV , cp specific heats at constant volume and
pressure

d cylinder diameter

E efficiency of energy separation

e internal energy

f vortex shedding frequency

I0 normalized total enthalpy

i0 total enthalpy

p pressure

R distance from the cylinder surface

T temperature

t time

U magnitude of the velocity vector

Xin, Xout,Y distance from the center of the cylinder
to the inlet, outlet, and side boundaries
of the corresponding subdomains

α polar angle in clockwise direction, mea-
sured from the frontal stagnation point

∆ approximate size of triangular elements of
mesh

δ, δT thicknesses of dynamic and thermal
boundary layers

γ specific-heat ratio

κ thermal conduction coefficient

µ viscosity coefficient

ρ density

τ viscous stress tensor

ε energy

ω vorticity vector

(·),i coordinate derivatives, i = 1, 2 corre-
sponds to x, y

(·),t time derivatives

0 stagnation (or total) parameters

∞ free-stream parameters
′ dimensional parameters

* transposition

(·) time-averaged value

tex street (attained by producing acoustic waves in a wind
tunnel) decreases the recovery factor at the rearmost point
of the cylinder, and based on some numerical calculations
they suggested a theoretical explanation of energy redis-
tribution in the vortex street.

The time-averaged flow in the central part of the wake
turns out to be cooled and have the total temperature
considerably smaller than that in the free stream. With
increase in the distance from the body, this effect is be-
ing weakened [13]. At the same time, as shown numeri-
cally in [9], instantaneous total-temperature distributions
contain also fairly well-marked hot spots, which are al-
most eliminated in the time-averaged patterns [9, 13]. The
presence of hot spots behind a circular cylinder was also
detected in the time-resolved experimental measurements
of total temperature [11, 14]. The consideration of ideal-
ized fluid-particle trajectories and the motion of low pres-
sure regions inside the vortices makes it possible to suggest
a simple explanation of the formation of nonuniformities

in the time-averaged and instantaneous total-temperature
patterns [9]. The key mechanism of the total-enthalpy
variation is associated with pressure fluctuations at fixed
points of space. In Section 3.1.2, this statement will be
confirmed by considering individual fluid-particle trajec-
tories in a vortex street and calculating the total enthalpy
using direct numerical simulation.

However, the simple explanation of energy separation
in a developed vortex street and the experimentally con-
firmed connection between the vortex street intensity and
the recovery temperature at the rearmost point do not
provide a complete explanation of the Eckert–Weise ef-
fect. Between these two phenomena (energy separation in
the vortex street and the Eckert–Weise effect), there lies
the process of vortex formation, which is more complex
than the flow in the vortex street, and hence all dissipa-
tive mechanisms need to be considered. In Section 3.2, we
show that the time-averaged wake can be divided into two
subregions with different reasons for cooling: a subregion
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of a developed vortex street and a subregion of vortex for-
mation. The coldest region turns out to be located in the
rear part of the cylinder, where the vortices are formed. To
clarify the underlying physics of the effect of decrease in
the total temperature in the near wake, including the vor-
tex formation region, is the main aim of our study, which
is likely to make it possible to use this effect for improving
the efficiency of energy separation devices.

We also aim at giving the quantitative comparison of the
contribution of different mechanisms to the energy sepa-
ration in the near wake on the basis of direct numerical
simulation of compressible viscous flow around a cylinder.
From the equation of total-enthalpy variation in a fluid
particle, it follows that energy separation can be caused by
three mechanisms [10]: non-stationarity of the flow (pres-
sure variations at fixed locations), the thermal-conduction
effect, and the work of the viscous forces. As will be shown
below (Section 3.2), in the time-averaged equation for the
total enthalpy a new term (mechanism), associated with
the time averaged convective derivative, appears. We will
analyze the role of different mechanisms in the energy sepa-
ration effect for both instantaneous and time-averaged flow
fields over a fairly wide range of Reynolds (30 ≤ Re ≤ 103),
Mach (0.1 ≤ M ≤ 0.6), and Prandtl (0.1 ≤ Pr ≤ 10) num-
bers.

Our study is based on direct numerical solution of the
Navier–Stokes equations obtained with a controlled accu-
racy by the Galerkin least-squares (GLS) finite-element
method on unstructured triangular meshes (Section 2).
The results (Section 3) are divided into two parts. In Sec-
tion 3.1, we discuss the reasons for the variation of the total
enthalpy in fluid particles in both the laminar boundary
layer and the vortex wake. Section 3.2 is devoted to the
study of energy separation in the time-averaged flow. The
time-averaged equation of total-enthalpy variation is writ-
ten in two different forms, and the physical meaning and
contribution of different terms (mechanisms) in these equa-
tions to the energy separation are studied. In Section 3.2,
a time-averaged flow scheme is given, which shows the lo-
calization of typical regions of decrease in total enthalpy.
The influence of the Reynolds, Mach, and Prandtl num-
bers on the efficiency of energy separation is discussed in
Section 3.2.3.

2. Problem Formulation and Numerical Method

The two-dimensional problem of a crossflow of a vis-
cous compressible gas past a circular cylinder is consid-
ered in the Cartesian coordinate system (x, y), with the
origin located at the center of the cylinder. The model of
a perfect viscous gas with constant specific heats, viscos-
ity, and thermal conductivity is used. The Navier–Stokes
equations governing the fluid flow in primitive variables
Y(x, t) = (p, u, v,T )* (* signifies transposition) can be writ-
ten as follows:

A0Y,t + AiY,i =
(︁
Ki jY, j − Pi

)︁
,i
. (1)

The unknown functions of time t and coordinates
x = (x, y) are the dimensionless pressure p(x, t), velocity
u(x, t) = (u, v), and temperature T (x, t). Matrices A0, Ai,
Ki j and vector Pi (i, j = 1, 2) arise due to the transition
from the conservative variables to the primitive ‘pressure-
velocity-temperature’ variables (the explicit expressions
are given in Appendix A). In Eq. (1), the repeated indices
imply summation, and the short notation for the deriva-
tives is used (·),t = ∂(·)/∂t, (·),1 = ∂(·)/∂x, (·),2 = ∂(·)/∂y.
All quantities are dimensionless, nondimensionalization is
performed using the following formulas (here, dimensional
quantities are denoted by primes)

t =
U∞t′

d
, x =

x′

d
, p =

p′

ρ∞U2
∞

, u =
u′

U∞
, T =

cVT ′

U2
∞

, ρ =
ρ′

ρ∞
,

The Reynolds Re, Prandtl Pr, Mach M, and Strouhal St
numbers are given by the formulas:

Re =
ρ∞U∞d

µ
, Pr =

µcp

κ
, M =

U∞
c∞

, St =
f d

U∞
.

Here, d is the diameter of the cylinder; ρ∞, p∞, U∞ are
the free-stream density, pressure, and velocity; κ, µ are the
thermal conduction and viscosity coefficients; cV , cp are
the specific heats at constant volume and pressure; c∞ =√︀
γp∞/ρ∞ is the sonic velocity in the free stream; γ = 1.4

is the specific heat ratio; and f is a characteristic vortex
shedding frequency.

At infinity, the flow is assumed to be uniform and di-
rected along the x axis u = (1, 0), the pressure p = 1/(γM2),
and the temperature T = 1/[γ(γ − 1)M2]. On the cylinder
surface, the velocity no-slip u = (0, 0) and adiabatic-wall
(zero heat flux) ∇T · n = 0 conditions are prescribed (here,
n is a unit normal vector).

The problem is solved by the Galerkin least-squares
(GLS) finite-element method on unstructured triangular
meshes. In this method, an additional term in the least-
squares form is introduced in the standard Galerkin vari-
ational equation to improve the stability of the numeri-
cal method. The original problem is reduced to a sys-
tem of nonlinear algebraic equations, which is solved by
Newton’s iterative method with the generalized minimum-
residual algorithm (GMRES). More details on the use of
the present numerical approach and a review on the stabi-
lized finite-element methods for compressible flows can be
found in [15–18].

It should be noted that, for most regimes considered be-
low, the real flow behind the cylinder is three-dimensional
and turbulent. In addition, it could be necessary to take
into account the dependence of the viscosity and thermal
conduction coefficients on temperature. Nevertheless, we
believe that our problem formulation makes it possible to
understand the underlying physics and to distinguish the
basic mechanisms of energy separation in the flow consid-
ered.
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Domain ∆ Xin Xout Y

Boundary layer 0.0005 - - -
Near wake 0.025 1.5 11 2
Middle wake 0.05 5 50 7.5
Far wake 0.25 10 100 15
Entire domain 2.5 200 400 200

Table 1: Parameters of the main mesh, number of nodes and ele-
ments are Nv = 720418, Ne = 1440836. ∆ is the approximate size of
triangular elements of the mesh, Xin, Xout, Y are the distances from
the center of the cylinder to the inlet, outlet, and side boundaries of
the corresponding subdomains.

2.1. Testing of the algorithm

Table 1 contains the values of mesh parameters used
in all calculations below. The dimensions of the compu-
tational domain are sufficiently large (400 × 600), which
makes it possible to reduce the possible influence of bound-
ary conditions on the artificial boundary ‘at infinity’. To
improve the efficiency of the calculations, the computa-
tional domain is divided into several nested subdomains
with different step sizes. In the region of interest (the
near wake), we have a high-resolution mesh, while further
downstream the mesh resolution decreases.

We consider the regimes with 100 6 Re 6 103, 0.1 6
Pr 6 10, 0.1 6 M 6 0.6, which gives us the following mini-
mal estimate (at Re = 103 and Pr = 10) of the thicknesses
of dynamic δ and thermal δT boundary layers:

δ ∼
1
√

Re
≈ 0.032, δT ∼

1
√

PrRe
≈ 0.01.

That is why in this case we have approximately 20 nodes
in the transverse direction for the thermal boundary layer
and 60 nodes for the dynamic boundary layer.

The influence of the variation of the mesh size and the
time step △t is investigated for the extreme case Re = 103,
M = 0.4, Pr = 10. We did not consider the regime with
M = 0.6 for these purposes because in this case the flow
becomes transonic, non-periodic, and the solution of the
initial-boundary value problem is more sensitive to the
perturbations of the numerical method. Accordingly, the
comparison of the results on different meshes becomes
much more complicated. For △t = 0.005, the calculated
mean value of the drag coefficient CD = 1.731, the ampli-
tude of the lift coefficient △CL = 1.565, and the Strouhal
number St = 0.24. The five-fold decrease in △t results in
a variation of each of these values by less than 0.2%. The
two-fold reduction of the mesh spacing changes each of
these values by less than 0.5%.
The integral characteristics of the flow are in good agree-

ment with the known data of other authors. Thus, for
Re = 103, M = 0.1, Pr = 0.72, our numerical result
CD = 1.511,St = 0.2378 differs by less than 0.3% from the
values (CD = 1.5092, St = 0.2372), obtained by R.D. Hen-
derson for incompressible flows [19, 20]. For Re = 100,
M = 0.4, Pr = 0.72, our numerical result CD = 1.431,

Fig. 1: Distribution of averaged heat flux qw = T−1
∞ |∇T ·n| over a heated

cylinder for Re = 140, Pr = 0.72, M = 0.1, the temperature of the
cylinder is 1.273T∞ (in this case, the boundary condition of constant
cylinder wall temperature was specified); dashed line - calculations
for incompressible flow from [22], solid line - present calculations.

△CL = 0.333, St = 0.1615 differs by less than 2% from the
data of [21] (CD = 1.45, △CL = 0.328, St = 0.162). The cal-
culated distribution of averaged heat flux qw = T−1

∞ |∇T · n|
over a heated cylinder with constant temperature 1.273T∞
(the condition of constant temperature of the cylinder wall
was used only in this test case) for Re = 140, Pr = 0.72,
M = 0.1 is shown in Fig. 1. Our results are in good agree-
ment with the incompressible-flow calculations from [22].

In the present study, the time-averaged parameters of
periodic flows are calculated according to the trapezoidal
rule. Two periods with approximately 40 nodes on each
of them have been used (for a non-periodic regime at M =

0.6, an interval containing 25 vortex shedding cycles was
chosen for averaging).

3. Results

The next two subsections deal with two approaches to
studying the energy separation process. At first (Sec-
tion 3.1), we investigate the mechanisms of the total-
enthalpy variation in fluid particles. Secondly (Sec-
tion 3.2), the causes of energy redistribution in a time-
averaged flow are studied. Basically, the analysis is carried
out for the regime Re = 103, M = 0.4, Pr = 0.72, the influ-
ence of Re, M, and Pr is considered in the last subsection
(Section 3.2.3).

3.1. Total Enthalpy in a Fluid Particle

The energy separation effect in the wake behind the
cylinder for Re = 103, M = 0.4, Pr = 0.72 is illustrated in
Fig. 2a-d, where, for four instants of time on half-period,
we plotted the patterns of the normalized total enthalpy
I0 (in the following text the word ‘normalized’ is omitted
when this does not lead to uncertainty):

I0 =
i0 − i0∞

i0∞
, i0 = γT +

1
2

U2. (2)

Here,

i0∞ =
1

(γ − 1)M2 +
1
2
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(a) t = 141.8 (b) t = 142.3

(c) t = 142.9 (d) t = 143.4

(e) Time-averaged total enthalpy, I0

Fig. 2: Energy separation effect in the wake behind the body: instantaneous (a-d) and time-averaged (e) total enthalpy I0 at Re = 103, M = 0.4,
Pr = 0.72. Solid and dashed lines on plots (a-d) are lines of ω = ±const; dashed lines on plot (e) are lines of I0 = const. At t = 141.8, the lift
coefficient attains its minimum (the interval of the initial transients is 0 6 t . 50). Limit values on the color maps are not maximum and
minimum of functions: function values greater than the upper limit (or less than the lower limit) are filled with one color corresponding to
this limit.

is the dimensionless total enthalpy in the free stream,
U2 = u2 + v2. The total enthalpy i0 differs from the total
temperature (stagnation temperature) T0 only by factor γ,
and therefore the normalized total enthalpy I0 is equal to
the normalized total temperature.

Clearly, the regions of increased and reduced values of
I0 are concentrated near the vortices, with the gas por-
tions characterized by negative values of I0 always being
located closer to the central part of the wake. After the
time averaging of these flow patterns, we obtain that in the
wake behind the cylinder near the symmetry axis there is
a region of cooled gas (I0 < 0) (see Fig. 2e). The most not-
icable reduction in I0 is observed in the vortex formation
region. This numerical demonstration of energy separa-
tion in the wake is consistent with the time-averaged [13]
and time-resolved [11, 14] measurements of the wake flow.

We will now try to explain the reasons for the redistri-
bution of I0 in the flow. For doing this, it is convenient to

write the equation of variation of the total enthalpy in the
following form:

Di0
Dt

=
1
ρ

∂p
∂t⏟ ⏞ 
𝒫

+
1
ρRe
∇ · (τ · u)⏟            ⏞            
𝒜

+
1

ρRePr
∇2T⏟        ⏞        
𝒬

. (3)

Here, D/Dt = ∂/∂t + u · ∇ is the material derivative. This
equation follows from the energy conservation law for vis-
cous heat-conducting gas. One can see that the variation
of the stagnation enthalpy in a chosen fluid particle can
be associated with the contribution of three terms on the
right-hand side:

1. 𝒫 is the specific pressure variation rate at a given
point of space, which characterizes the change of the
enthalpy due to the non-stationarity of the flow;

2. 𝒜 is the work of viscous forces per unit mass and unit
time;

5



(a) 𝒫 +𝒜 + 𝒬 (b) 𝒫

(c) 𝒜 (d) 𝒬

Fig. 3: The rate of variation of total enthalpy Di0/Dt (a) in the fluid particle and the contribution of three mechanisms: 𝒫 (b), 𝒜 (c), 𝒬 (d)
at Re = 103, M = 0.4, Pr = 0.72. Solid and dashed lines are lines of ω = ±const. The time instant corresponds to the minimum value of the lift
coefficient, t = 141.8. Limit values on the color maps are not maximum and minimum of functions: function values greater than the upper
limit (or less than the lower limit) are filled with one color corresponding to this limit.

3. 𝒬 is the heat release per unit mass and unit time due
to the thermal conduction effect.

If the value of a term is positive (negative), than the
corresponding mechanism tends to increase (decrease) the
total enthalpy i0 of a chosen fluid particle. By calculating
the flow parameters, we can construct the fields of the
values of different terms: 𝒫, 𝒜, 𝒬 (see Fig. 3).
As is clear from the patterns in Fig. 3, with the excep-

tion of a local flow region near the cylinder surface, the
variation of i0 in fluid particles is caused mainly by term
𝒫. It follows from Eq. (3) that if the dissipative mech-
anisms are omitted than a redistribution of i0 is possible
only because of 𝒫, which is associated with the variation
of only the kinetic energy. Indeed, from the equations of
variation of kinetic and internal energy

D
Dt

(︃
1
2

U2
)︃

=
1
ρ

∂p
∂t
−

D
Dt

(︃
p
ρ

)︃
+ p

D
Dt

(︃
1
ρ

)︃
, (4)

De
Dt

= −p
D
Dt

(︃
1
ρ

)︃
, (5)

it can be seen that the transitions between the internal
and kinetic energy are described only by the third term
in the first equation (the work of internal surface forces).
Therefore, the term 𝒫 = ρ−1∂p/∂t (part of the work of
external surface forces) is responsible only for a change of
kinetic energy and can only indirectly affect the variation
of internal energy.

In the vicinity of the rearmost point of the cylinder, the
field 𝒫 (Fig. 3b) is changed significantly after taking into

account the contribution of 𝒜+𝒬 (Fig. 3a). Therefore, the
contribution of the dissipative mechanisms is significant
near the rearmost point and must be taken into account
when explaining the Eckert–Weise effect. It is also clear
from Fig. 4 which shows how the fields of I0, Di0/Dt, 𝒫,
and 𝒜 + 𝒬 on the cylinder surface depend on α, time t,
and the position of the first separation point. In the rear
part of the cylinder, both fields of 𝒫 (Fig. 4c) and 𝒜 + 𝒬

(Fig. 4d) play an important role in the time variation of
I0 (Fig. 4a).

3.1.1. Laminar Boundary Layer

Ahead of the separation point, the unsteady behavior
of I0 is determined by both fields 𝒫 and 𝒜 + 𝒬 (Fig. 4).
However, the action of the pressure variation 𝒫 is not re-
sponsible for the process of energy separation across the
boundary layer, because the values of the pressure in fixed
cross-sections of the boundary layer change only slightly
(therefore, p,t does not change significantly). That is why
𝒫 affects the global increase/decrease of profiles I0 in time
and probably changes I0 along the boundary layer, but
the redistribution of energy in the direction normal to
the body surface is mainly determined by 𝒜 + 𝒬. Thus,
the field of 𝒜 + 𝒬 generates non-uniformities in the total-
enthalpy variation rate Di0/Dt across the boundary layer
and thereby determines the shape of these profiles.

For the part of the boundary layer located ahead of the
separation regions, for Re = 103, M = 0.4, Pr = 0.72 we ob-
tained a decrease in the average value of the total enthalpy
near the cylinder surface (see Fig. 5). This occurs due to
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a more intense (on average) heat efflux associated with
heat conduction 𝒬, as compared to the enthalpy growth
due to the work of the viscous forces 𝒜. With increase in
the distance from the frontal stagnation point, this effect
becomes more pronounced.

As is clear from Fig. 4, the sum 𝒜 + 𝒬 does not always
tend to reduce the value of I0 along the boundary layer. In
Fig. 4d, one can see that there are instants of time when
𝒜 + 𝒬 > 0 and 𝒜 + 𝒬 < 0. This behavior is associated
with non-stationarity of flow separation. The increase in
the pressure causes the separation point to move upstream,
reducing the transverse velocity gradient and the external-
flow velocity. The last two circumstances lead to smaller
values of the friction-force work (𝒜) and less intense heat
efflux (𝒬). Judging by the fact that 𝒜 + 𝒬 becomes neg-
ative, the process of changing 𝒜 turns out to be more
intense. Similarly, a decrease in pressure leads to positive
values of 𝒜 + 𝒬 > 0. Figures 4c, d show that when the
pressure is close to the minimum value, 𝒜 + 𝒬 reaches its
maximum and vice versa, a minimum of 𝒜+𝒬 is attained
in the vicinity of the maximum value of the pressure.

It should also be noted that for each cross-section of the
boundary layer there are such time instants when the value
of I0 is positive (see Fig. 5), i.e. the stagnation temperature
T0 on the surface is greater than the free-stream stagnation
temperature. The maximum instantaneous value of T0,
attained behind the separation point (at α ≈ ±100∘), is by
3% greater than the free-stream value of T0.

3.1.2. Vortex Street

In [9], the following mechanism of energy redistribution
in a vortex street was proposed. Inside the vortices, the
pressure is smaller than outside; accordingly, when a fluid
particle travels ahead of the vortex, we have 𝒫 < 0 (be-
cause p,t < 0) and the enthalpy I0 decreases; behind the
vortex 𝒫 > 0 (because p,t < 0) and the enthalpy I0 in-
creases. Below, we will confirm this explanation based on
the calculation of the pattern of DI0/Dt = 𝒫 +𝒜 + 𝒬 and
the trajectories of chosen fluid particles.

Some examples of the calculated fluid-particle trajecto-
ries are shown in Fig. 6. The first four plots correspond
to the patterns of I0 in Fig. 2. Let us trace the motion
of a particle marked by symbol ◇. It travels along the
curve similar to a cycloid around the vortex rotating in
the clockwise direction. At the first three instants of time,
the particle is located in the upstream part of the vortex,
where 𝒫+𝒜+𝒬 > 0. Accordingly, I0 increases and attains
its local positive maximum approximately at a point of
maximum distance from the axis of symmetry (Fig. 6c, i).
Then, the fluid particle enters the leeward part of the vor-
tex (𝒫 + 𝒜 + 𝒬 < 0) and I0 drops to its minimum value,
attained on the opposite side of the vortex. A situation is
possible in which the fluid particle is not ‘trapped’ by the
vortex but is transported from one side of the vortex street
to the other (see, for instance, the migration of symbol �
in Fig. 6). In this case, when the fluid particle approaches
the centerline it is affected by the upstream vortex, and

(a) I0

(b) 𝒫 +𝒜 + 𝒬

(c) 𝒫

(d) 𝒜 + 𝒬

Fig. 4: Variation of the total enthalpy on the surface (a) and the
mechanisms responsible for this variation at Re = 103, M = 0.4, Pr =

0.72: 𝒫+𝒜+𝒬 (b), 𝒫 (c) and 𝒜+𝒬 (d). Solid lines show the position
of the separation point (the nearest to the frontal stagnation point
for both sides of the cylinder), when it disappears the line breaks;
dashed white lines mark the time instants corresponding to the plots
in Fig. 6a-h. Limit values on the color maps are not maximum and
minimum of functions: function values greater than the upper limit
(or less than the lower limit) are filled with one color corresponding
to this limit.

𝒫 +𝒜 +𝒬 < 0, with the value of I0 being decreased. After
the particle crosses the centerline, I0 begins to grow under
the influence of the downstream vortex.

As is clear from Fig. 2, the growth of I0 is also observed
in the tail regions of the shed vortices. This again can
be associated with mechanism 𝒫 (see Fig. 3). In the
region where the tail of the vortex is detached from the
cylinder, the streamlines have a high curvature, so that
at the instant of vortex shedding the pressure increases
(𝒫 > 0). Therefore, in the fluid particles moving in the
direction outside the wake, the total enthalpy is increased,
which can be seen in the regions near the vorticity tails
(Fig. 2). These areas are transferred downstream. As the
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Fig. 5: Total enthalpy I0 in boundary layer at α = 30∘, 60∘, 90∘, Re =

103, M = 0.4, Pr = 0.72. R is the distance from the cylinder surface.
The shaded region shows the scatter of the values of I0 on a period.

vortices are being shed from the cylinder, the curvature
of the streamlines near their tails decreases, so the growth
rate of I0 due to the term 𝒫 also decreases.

When a vortex street in the wake is absent, a region of
reduced values of the total enthalpy I0 still exists, but this
reduction is associated with the flow in the boundary layer,
where negative values of I0 are attributable to the intense
heat efflux. To illustrate this fact, in Fig. 7 we present
the patterns of the total enthalpy I0 and the sum 𝒜 + 𝒬

for a steady-state flow at Re = 30, M = 0.4, Pr = 0.72.
The value of I0 in the fluid particle attains a minimum
in the vicinity of the point α = 90∘, and then tends to
zero, as the fluid particle travels downstream. Figure 7b
shows that for 0∘ 6 α . 90∘, the decrease in I0 due to
the heat flux 𝒬 is more intense, than the increase in I0
due to the friction forces 𝒜. On the other hand, at α &
90∘ the second mechanism dominates, and I0 increases.
A similar effect was observed earlier in experiments [12]
with a splitter plate behind the cylinder, which suppressed
the vortex shedding. It was shown, that because of the
boundary layer flow the energy separation is still observed,
but its efficiency is much smaller.

As is clear from Fig. 6, at sufficiently large distances
from the body in some fluid particles the value of i0 is
smaller than that in the free stream by more than 6%
(symbol ◇, x ≈ 3, t ≈ 144). However, the averaged i0 differs
from the free-stream value by less than 5% (Fig. 2). The
minimum values are attained near the body: for x > 1.1,
the average value of i0 differs from the free-stream value
by less than 3%. By analyzing the variation of i0 in in-
dividual fluid particles of an unsteady flow, it is difficult
to predict where the energy separation effect will be most
pronounced. In the flow around the cylinder considered
in this study, in the region where the time-averaged total
enthalpy is minimal, the contribution of each of the three
mechanisms is of the same order. The fluid-particle tra-
jectories are too tangled (see for instance the pathline of

symbol ∘, Fig. 6), and the analysis becomes too laborious.
Accordingly, to discuss the efficiency of energy separation,
it is more convenient to consider time-averaged solutions.

3.2. Total Enthalpy in the Time-Averaged Flow

Each flow parameter can be represented as the sum of
the time-averaged value and a fluctuation. We denote
them by (·) and (·)′, for example, u = u+u′. In the next two
subsections, we will consider two forms of the equation de-
scribing the variation of the averaged total enthalpy i0 with
the aim to understand the major physical mechanisms of
the time-averaged energy separation process.

3.2.1. Approach 1 (Based on the Averaged Equation of
Total-Enthalpy Evolution)

After the time averaging of the total enthalpy evolution
equation (3), we obtain:

u·∇i0 = −u′ · ∇i′0+
1
ρ

∂p
∂t⏟ ⏞ 
𝒫

+
1

Re
1
ρ
∇ · (τ · u)⏟             ⏞             
𝒜

+
1

RePr
1
ρ
∇2T⏟         ⏞         
𝒬

. (6)

This equation gives the information about the variation
of i0 along the averaged streamlines. In an unsteady flow,
the term −u′ · ∇i′0 arises, which affects the average distri-
bution of i0. Thus, even if the sum of other mechanisms
gives zero contribution, the time-averaged energy separa-
tion is still possible. The following example demonstrates
this nonlinear effect.

It is convenient to consider a model one-dimensional ad-
vection equation with a source term:

i0,t + ui0,x = ℱ . (7)

Here, all functions depend on x and t. Consider the fol-
lowing periodic solution of this equation:

i0 = I(x)(1 −
2
a

cos νt), u = U(x)(1 + a cos νt), (8)

corresponding to a given function ℱ with the mean value
ℱ = 0:

ℱ =
2ν
a

I sin νt − UI,x

[︃(︃
2
a
− a

)︃
cos νt + cos 2νt

]︃
. (9)

Here, I(x) and U(x) are arbitrary functions, and ν , 0
and a , 0 are arbitrary coefficients. For this solution, the
mean values of i0 and u are equal to I(x) and U(x), and
the variation of i0 is caused by the presence of term ℱ : if
ℱ ≡ 0, then I(x) ≡ 0.

In spite of the fact that the mechanism ℱ is described
by a periodic function with ℱ = 0, the time-averaged value
of the total enthalpy may decrease in the fluid particle, as
it travels downstream. For example, let a = 0.5, ν = 2π,
U(x) = 1, I(x) = −x. Then we have:

ui0,x = −u′i′,x + ℱ = −1. (10)
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(a) t = 141.8 (b) t = 142.3

(c) t = 142.9 (d) t = 143.4

(e) t = 143.9 (f) t = 144.4

(g) t = 145.0 (h) t = 145.5

142.0 142.5 143.0 143.5 144.0 144.5 145.0 145.5 146.0

-0.06

-0.04

-0.02
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t = 145.5t = 145.0t = 144.4t = 143.9t = 143.4

I0

t

t = 141.8 t = 142.3 t = 142.9

(i) I0

Fig. 6: The rate of variation of the total enthalpy DI0/Dt in fluid particles for Re = 103, M = 0.4, Pr = 0.72: the patterns of DI0/Dt and the
pathlines of fluid particles for eight instants of time on the period (a-h). Plot (i) shows the dependencies I0(t) for each fluid particle. Gray
solid and dashed lines in plots (a-d) are isolines ω = ±const. Black lines in plots (a-d) show the trajectories, and the symbols show the locations
of liquid particles. The symbols correspond to those in plot (i). At t = 141.8, the lift coefficient attains its minimum. Limit values on the
color maps are not maximum and minimum of functions: function values greater than the upper limit (or less than the lower limit) are filled
with one color corresponding to this limit.
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(a) I0

(b) 𝒜 + 𝒬

Fig. 7: Energy separation for 𝒫 = 0 (the flow is steady-state), Re = 30,
M = 0.4, and Pr = 0.72. The upper plot (a) shows the pattern of I0 and
the lower plot (b) the pattern of 𝒜 + 𝒬. Solid lines are streamlines;
dashed lines in plot (a) are isolines I0 = const

This example clearly demonstrates that one cannot es-
timate the contribution of a specific mechanism to the en-
ergy separation process using only the time-averaged value
of the term associated with this mechanism. The indirect
effect associated with the term −u′ · ∇i′0 may be also impor-
tant. If the non-stationary action of the source ℱ ensures a

positive correlation (u − u)(i0,x − i0,x) at the point of space,
then i0 decreases along the flow direction.

When such nondimensionalization is used that the Mach
number stands in the equations rather than in the bound-
ary conditions, in Eq. (6) the factor M−2 appears in the

term 𝒫. In Section 3.2.3 it will be shown that, in the
regimes considered, the energy separation efficiency varies
mainly with the Mach number. This is why the appear-
ance of the negative correlation u′ · ∇i′0 in the wake is at-

tributable to the action of the term 𝒫.
Figure 8a-e illustrates the time-averaged energy separa-

tion process for Re = 103, M = 0.4, Pr = 0.72. Figure 8a-b
shows the total enthalpy I0 and the value of u·∇i0/|u|, char-
acterizing the growth and decrease of I0 along the direction
of the averaged streamlines. Using this data, a scheme il-
lustrating the energy separation process was constructed
(Fig. 9). There are three key regions (Regions I, II, III in
the figure), which cause a decrease in the total enthalpy
i0.

Region I is associated with the total-enthalpy decrease
in the laminar boundary layer. Behind the body, the
flow region can be separated by the streamlines bypass-
ing the recirculation zones (bold lines in Fig. 9). Then
the decrease in the total enthalpy near the rear part of
the body is determined by Region II, and the values of i0
downstream are determined by the flow in the strip where
u · ∇i0/|u| < 0 (Region III ), which provides negative values

for I0 in the wake.
The term −u′ · ∇i′0 makes the main contribution to the

rate of variation of the total enthalpy in the averaged flow
(Fig. 8c-e). It is clear that in the wake the sum 𝒫+𝒜+𝒬

(Fig. 8e) is small as compared to −u′ · ∇i′0 (Fig. 8d), and

the fields of −u′ · ∇i′0 and u · ∇i0 differ only slightly. Thus,
in this interpretation, the mechanism of energy separation
associated with the correlation u′ · ∇i′0 dominates in the

wake. However, the reduction of I0 in the boundary layer
is ensured mainly by 𝒫 + 𝒜 + 𝒬 (more precisely, by the

action of 𝒬), which is dominant inside this region.
In the next section, using another form of equation for

the averaged total enthalpy, we will present a more detailed
information on the mechanisms that cause the change in
the total enthalpy in Regions I, II, and III.

3.2.2. Approach 2 (Based on the Kinetic-Energy Equa-
tion)

From the law of conservation of momentum one can ob-
tain the relation

∇i0 = ∇e − u,t + p∇
1
ρ
− ω × u +

1
Re

1
ρ
∇ · τ. (11)

Here, ω = (∇ × u) is the vorticity vector. The time-
averaging and multiplication by the average value of the
velocity lead to the following expression

u · ∇i0 = u · ∇e + pu · ∇
1
ρ

+ω · (u × u) +
1

Re
1
ρ

u · (∇ · τ). (12)

The first and second term on the right-hand side of
Eq. (12) relates the non-uniformity of the total enthalpy
with the non-uniformities of the internal energy (or tem-
perature) and the density along the averaged streamlines.
The non-uniformity of e and ρ across the averaged flow
direction does not contribute to a change in the total en-
thalpy (along the averaged streamlines). The third term
results in either increase or decrease in i0 due to the change
in the direction of instantaneous streamlines. The veloc-
ity fluctuations along the averaged flow direction do not
contribute to a change in the total enthalpy. The fourth
term expresses the influence of viscous forces on the energy
redistribution.

For an incompressible inviscid and non-heat-conducting
flow, the internal energy and density are constant in the
entire flow field (when the free stream is uniform). There-
fore, the first two and the fourth terms do not affect the
distribution of i0. However, energy separation is still pos-
sible because of the third term. It should be noted that in
the case of strictly incompressible flow the redistribution
of i0 is in fact the redistribution of total pressure. If the
flow is also irrotational or the streamlines do not vary in
time (that is, ω · (u×u) = 0), then the total enthalpy in the
entire flow region is the same, and there can be no energy
separation.

Let us now analyze the flow at Re = 103, M = 0.4, Pr =

0.72 based on this approach. Comparing the fields for
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(a) I0 (b)
(︀
u/|u|

)︀
· ∇i0

(c) u · ∇i0 (d) −u′ · ∇i′0 (e) 𝒜 + 𝒬 + 𝒫

(f)
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· ∇ρ−1 (g) ω · [
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)︀
× u] (h) ρ−1 (︀

u/|u|
)︀
· (∇ · τ)/Re

Fig. 8: Estimate of the terms in averaged Eqs. (6) and (12) for Re = 103, M = 0.4, Pr = 0.72. Solid lines show the streamlines. Limit values on
the color maps are not maximum and minimum of functions: function values greater than the upper limit (or less than the lower limit) are
filled with one color corresponding to this limit.

Fig. 9: Scheme of energy separation in the time-averaged flow. In Regions I-III, I0 is decreased and in Region II′ I0 is increased. The shaded
region in the wake shows where I0 < 0. The flow in the wake is divided in two parts by bold streamlines, with the decrease in I0 in each part
being mostly described by the flow through one of Regions II, III.

the contribution of each mechanism (Fig. 8f-h) with their
total-action field (Fig. 8b), we will obtain information on
the role of each mechanism in the formation of Regions I,
II, III (Fig. 9).

Region I provides a decrease in the total enthalpy in
the laminar boundary layer and is primarily related to the
action of the fourth term in Eq. (12). The work of fric-
tion forces (Fig. 8h) most strongly affects the flow in the
boundary layer and gives a negative contribution to the
rate of change in the total enthalpy for |α| . 80∘ (behind
the separation point, 80∘ . |α| . 105∘, friction forces act
in the opposite way).

The constructed energy separation scheme in the wake

(Fig. 9) shows that a cold spot near the body is associated
with the vortex formation process (Region II ), and the
decrease in i0 in the wake is associated with the flow in
the tails of detached vortices (Region III ).

The strongest decrease in I0 in Region II is associated
with the contribution of the first three terms in Eq. (12).
The sum of the first two terms act, in general, opposite to
the third term (Fig. 8f, g). The comparison of the fields
related to the total action of all mechanisms (Fig. 8b)
and the field associated with the action of only the term

ω · (u × u) (Fig. 8g) shows that behind the cylinder the
qualitative behaviour of I0 can be described mainly by the
third mechanism (changing the direction of the stream-
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Fig. 10: Efficiency of energy separation at various Reynolds (M = 0.4,
Pr = 0.72), Mach (Re = 103, Pr = 0.72) and Prandtl (Re = 103, M = 0.4)
numbers.

lines), and the sum of the first two mechanisms (Fig. 8f)
only weakens this effect. The third term affects the field
of I0 in two ways: on one hand, it causes the reduction of
I0 behind the body in Region II, and on the other hand
it leads to an increase in I0 downstream in Region II′. As
a result, a minimum value of I0 is attained near the body
surface.

Regarding the Eckert–Weise effect, from the comparison
of the fields in Fig. 8 one can see that near the cylinder sur-
face the gas is cooled because of the fourth term in Eq. (12)
at the frontal part of the cylinder (Fig. 8h) and because of
non-uniformities in the temperature and density fields at
the rear part of the cylinder (first two terms in Eq. (12),
Fig. 8f). This allows to conclude that the effect of reduc-
tion of I0 in the rear part of the cylinder is associated with
the non-uniformity of temperature and density created by
the evolution of recirculation zones near the body surface.

Region III is the strip where u · ∇i0/|u| < 0, extending
into the wake (Fig. 8b). This region is a result of the
action of the first three terms in Eq. (12). Due to the flow
in this region, a zone of reduced average total enthalpy in
the wake is created. The location of this strip in space
is determined by the position of the tails of the vortices
detached from the body (Fig. 2). In the region y > 0
(y < 0), the tails with ω < 0 (ω > 0) are formed and then
travel away from the symmetry line. This means that the
vectors u × u and ω are oriented in opposite directions,
so that ω · (u × u) < 0, and the I0 decreases. A non-
uniformity in the internal energy and density in Region
III tends to increase I0 on one part of this region and to
reduce it on the other part. However, it turns out that
on the whole for this flow regime these mechanisms make
a smaller contribution to the rate of change of the total
enthalpy as compared with the action of the third term.

It should be noted that at Re = 30 (Fig. 7) the flow re-
gion in the wake also has a reduced temperature, although
the third term on the right-hand side of Eq. (12) is identi-

cally equal to zero (the flow is stationary, hence u = u and
u×u = 0). In this case, a strip similar to that shown in the
figure also exists (Fig. 7b), but the decrease of I0 in this re-
gion is determined by the work of the friction forces. This
strip corresponds to Region I, which at Re = 30 extends
downstream, rather than ends at α ≈ ±90∘, as for Re = 103.
Thus, depending on the values of the dimensionless pa-
rameters, the degree of influence of different mechanisms
and the energy redistribution scheme can change, thereby
changing the efficiency of energy separation. In the next
section, we discuss the efficiency of energy separation for
different flow regimes.

3.2.3. Efficiency of the Energy Separation

Let the efficiency of energy separation E be described
by the minimal value in the field of the normalized time-
averaged total enthalpy E = |min(I0)|. This quantity indi-
cates the difference of the minimal value of the averaged
total enthalpy i0 from i0∞. Figure 10 shows the values of
E for different regimes.

Influence of the Reynolds number Re. As Re increases
from 30 to 103, E increases in more than 4 times. How-
ever, the difference between the value of E for Re = 500
and Re = 103 is only 0.3%. The main influence of the in-
crease in the Reynolds number on the energy separation
process is associated with the intensification of the vortex
shedding process. As a result, the strongest changes in
I0 occur in Regions II, II′ and III. Except for the case of
Re = 30, the minimum of I0 is attained at a certain dis-
tance from the body (see Fig. 2, Fig. 11a, d). At Re = 30,
the minimum of I0 is attained at the points α = ±89∘ on
the surface of the cylinder (Fig. 7).

The character of the distribution of I0 over the body
surface also varies significantly, depending on the value of
Re (Fig. 12a). The positions and the number of extrema
of I0 are determined by the dynamics and number of sep-
aration zones in the rear part of the body. The behavior
of I0 in the boundary layer region turns out to be similar
for different Re, since both the terms responsible for the
friction forces (𝒜) (which results in the increase of I0) and
for the heat conduction (𝒬) (which results in the decrease
of I0) contain the same factor 1/Re.

At the frontal stagnation point x = −0.5, y = 0 the value
of I0 is not strictly equal to 0 (Fig. 12a), which is due to the
viscosity and thermal conductivity effects in the vicinity of
this point. Consider a steady-state flow along the x-axis in
a narrow stream tube on the symmetry axis. Simplifying
the expressions on the right-hand side of Eq. (3), we obtain
that on the surface with the outward normal (0, 1) the vari-
ation of i0 can be caused by the viscous forces u,yu/(ρRe)
and thermal conductivity T,y/(ρRePr). In the problem con-
sidered, near the line y = 0 we always have a reduction in
the value of u and increase in temperature T . Accord-
ingly, the work o f the viscous forces always increases I0,
and the heat efflux leads to a decrease in I0. This is why
in Fig. 12a the increase in Re results in approaching I0 to
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(a) Re = 100, Pr = 0.72, M = 0.4 (b) Re = 103, Pr = 0.72, M = 0.1 (c) Re = 103, M = 0.4, Pr = 0.1

(d) Re = 500, Pr = 0.72, M = 0.4 (e) Re = 103, Pr = 0.72, M = 0.6 (f) Re = 103, M = 0.4, Pr = 10

Fig. 11: Influence of Re (a, d), M (b, e), Pr (c, f) on time-averaged total enthalpy I0. Solid and dashed lines are lines of I0 = const. Limit values
on the color maps are not maximum and minimum of functions: function values greater than the upper limit (or less than the lower limit) are
filled with one color corresponding to this limit. Actually, in the depicted flow region the value of I0 varies within the limits: (−0.0229, 0.0023)
(a); (−0.0034, 0.0002) (b); (−0.0609, 0.0099) (c); (−0.0447, 0.0027) (d); (−0.0833, 0.0089) (e); (−0.0511, 0.2059) (f).

(a) Pr = 0.72, M = 0.4 (b) Re = 103, Pr = 0.72 (c) Re = 103, M = 0.4

Fig. 12: Time-averaged total enthalpy I0 distribution on the cylinder surface at various values of Re, M and Pr.

0 at the point x = −0.5, y = 0, while a decrease in Pr en-
hances the negative contribution of heat conduction to the
value of i0, which results in the decrease in I0 below zero
at Pr = 0.1 (Fig. 12c).

Influence of the Mach number M. The increase in the
Mach number from M = 0.1 to M = 0.6 results in a more
then 25-fold increase in E (Fig. 10, Fig. 11b, e). If we use
such nondimensionalization that the Mach number enters
in the equations, rather than in the boundary conditions,
the factor M−2 appears in the first two terms of Eq. (12).
Noting that the contribution of the sum of these terms in
Region II is opposite to that of the third term (Fig. 8b),
we can assume that this is why the increase in the Mach
number should lead to an increase in the efficiency of en-
ergy separation. This agrees with the assumption that
the third term in Eq. (12), related to the unsteadiness of
streamlines, is the key mechanism causing the reduction
of the total enthalpy in the wake.

Influence of the Prandtl number Pr. A variation of the
Prandtl number affects significantly the surface distribu-
tion of the parameters (Fig. 12c), changes the pattern of
I0 near the cylinder (Fig. 11c, f), but surprisingly has a
relatively slight impact on the energy separation efficiency
E (see Fig. 10). For instance, the increase in Pr from 0.72

to 10 results in a growth of I0 on the whole (Fig. 11f) and
near the separation point the value of i0 becomes approxi-
mately by 20% greater than in the free stream (Fig. 12c).
However, in the wake near the rear part of the cylinder the
minimal value of I0 slightly differs from the corresponding
value for Pr = 0.72 (Fig. 10). Thus, despite the impact of
heat conductivity has been reduced by more than on order
of magnitude, we still have the similar effect of energy sep-
aration. For Pr = 0.1, the minimum is located on the body
at the point α = 180∘, but the cold region in the wake still
exists and has the similar structure.

It should be noted that all conclusions made in this sub-
section are based on only a qualitative consideration, be-
cause the mechanisms do not change independently with
the change of Re, M, and Pr.

4. Conclusion

From our numerical simulations, we can draw the fol-
lowing conclusions.

∙ A non-uniformity in the total-enthalpy distribution
across the boundary layer in unsteady flow is at-
tributable to the action of dissipative mechanisms.
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∙ In the vortex street, the process of total-enthalpy vari-
ation in fluid particles is associated with pressure fluc-
tuations and is well described by the model proposed
in [9].

∙ To describe the strongest decrease in the averaged to-
tal enthalpy in the vortex formation region and the
Eckert–Weise effect, it is necessary to take into ac-
count the action of all dissipative and non-stationary
mechanisms: viscous forces, thermal conductivity,
and part of the work of the external surface forces,
associated with pressure fluctuations at the points of
space.

∙ The total-enthalpy stratification in the time-averaged
flow can be associated mainly with the action of the
mechanism described by the term u′ · ∇i′0, which arises
after averaging the nonlinear convective derivative.
However, the appearance of a negative correlation
u′ · ∇i′0 in the wake is attributable to the action of
the term 𝒫 (pressure variation rate at a given point
of space).

∙ The estimate of the main factors affecting the aver-
aged flow (Fig. 8) indicates the following.

– The Eckert–Weise effect is associated mainly
with non-uniformities in the temperature and
density fields, created by the evolution of recir-
culation zones near the body surface.

– In the wake, the time-averaged total enthalpy
decreases mainly due to streamline oscillations.

∙ Three characteristic regions of reduced total enthalpy
i0 can be distinguished in the flow (Fig. 9). Region I
is associated with the decrease in i0 in the boundary
layer. Regions II and III determine the decrease in i0
in the wake behind the body. Moreover, the averaged
flow in the wake can be divided into two parts, so
that Regions II and III determine the decrease in
i0 in different parts of the wake (Fig. 9). Region II,
located in the vortex formation zone, is responsible for
the appearance of minimal values of i0 near the body
surface. Region III is a strip along which the tails of
the shed vortices travel; this region is responsible for
lowering of i0 in the wake behind the vortex formation
region. Thus, it was obtained that the decrease in i0 in
this part of the wake (in the developed vortex street)
is caused by the motion of vortex tails.

Acknowledgement

The work was supported by the Russian Science Founda-
tion (project 14-19-00699). The calculations were carried
out using the equipment of the shared research facilities
of HPC computing resources at Lomonosov Moscow State
University.

Appendix A. The Navier–Stokes equations in
primitive variables

The matrices in Eq. (1) take the following form:

A0 =
1

(γ − 1)T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 −

p
T

u p 0 −
pu
T

v 0 p −
pv
T

ε pu pv −
pU2

2T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

A1 =
1

(γ − 1)T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
u p 0 −

pu
T

u2 2pu 0 −
pu2

T
uv pv pu −

puv
T

uε pu2 + pε puv −
puU2

2T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

A2 =
1

(γ − 1)T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
v 0 p −

pv
T

uv pv pu −
puv
T

v2 0 2pv −
pv2

T

vε puv pv2 + pε −
pvU2

2T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

K11=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0
0 4

3Re 0 0
0 0 1

Re 0
0 4u

3Re
v

Re
γ

PrRe

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, K12=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0
0 0 − 2

3Re 0
0 1

Re 0 0
0 v

Re − 2u
3Re 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

K21=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0
0 0 1

Re 0
0 − 2

3Re 0 0
0 − 2v

3Re
u

Re 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, K22=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0
0 1

Re 0 0
0 0 4

3Re 0
0 u

Re
4v

3Re
γ

PrRe

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

P1 = p (0, 1, 0, u)* , P2 = p (0, 0, 1, v)* .

Here, ε = T + U2/2.
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