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Abstract

The transition to three-dimensionality in the near wake behind a circular cylinder is studied numerically. Two modes of
instability are considered for the Reynolds numbers 220 (mode A) and 300 (mode B). In the linear approximation the
evolution of three-dimensional perturbations in a fluid particle can be described through the action of four mechanisms:
(I) stretching of the vortex lines of perturbations by the base flow; (II) shear deformations of the vortex lines of the
base flow by perturbations; (III) viscous diffusion of perturbations; (IV) solid-state rotation of fluid particles. The
fields of each mechanism are determined by the results of a numerical solution of the three-dimensional NavierStokes
equations. An analysis of the influence of these mechanisms is carried out and the regions of growth and decay of the
three-dimensional vortex structures are identified. The main destabilizing effect is related to the stretching of vortex
lines of perturbations (I) and shear deformations of the base flow vorticity (II). Viscous diffusion (III) stabilizes the flow
and solid-state rotation (IV) does not influence the amplitude of perturbation in a fluid particle. For mode A there are
two stages of perturbations growth: inside the elliptic part of the forming vortex and in the hyperbolic region of the braid
shear layer, where the forming vortex is separated from the cylinder. At both stages the growth of three-dimensional
vortex structures is mostly related to mechanism (I), however, a significant impact of mechanism (II) on this process is
observed at the first stage. The most intensive growth occurs at the second stage. Perturbations of mode B are growing
outside elliptic regions and are determined by mechanism (I), the shear deformations (II) have mainly a stabilizing effect.
The length of perturbation enhancement time interval was estimated: it is twice as large for mode A as for mode B.
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1. Introduction

In the experimental work [1] two stages of loss of
stability were identified during the transition to three-
dimensionality in the wake of the cylinder, which were
called modes A and B. At the Reynolds number Re = ReA

(Re = U∞d/ν, where U∞, d and ν are the free-stream ve-
locity, the cylinder diameter, and the kinematic viscosity)
large-scale three-dimensional vortex structures of mode A
arise with a wavelength of about 3–4d. At the Reynolds
number Re = ReB (ReB > ReA) small-scale structures of the
B mode emerge with a wavelength of about 1d and three-
dimensional patterns that are fundamentally different from
mode A are formed. Analysis of the stability of a two-
dimensional periodic flow with the application of the linear
Floquet theory gives values for the critical Reynolds num-
ber and spanwise wavelength: ReA = 188.5±1, ReB = 259±2
and λA = 3.96 ± 0.02, λB = 0.822 ± 0.007 [2]. These re-
sults are in good agreement with the experiment (the value
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of ReB is higher, but this is explained by the fact that
mode B in the experiment does not develop from the two-
dimensional flow, but it develops together with the per-
turbations of mode A).

The present paper addresses the problem, which was
stated among other outstanding questions in the conclu-
sion of an extensive review [3], and the solution to it is still
not completely clear: “... can we explain, with precision,
the origin of mode A and B instabilities?”. There are vari-
ous speculations about the mechanisms of the emergence of
modes A and B [4–10], but none of them is so far justified
enough to become generally accepted. In particular, the
most common and reasonable hypothesis about the phys-
ical mechanism of transition to a three-dimensional flow
in the wake behind a cylinder (mode A formation) is the
hypothesis of an elliptical instability of the vortex cores
[4, 6, 7]. The structures observed in the formation of the
vortices and the motion of the shed vortices in the wake
strongly resemble the idealized flow generated by the el-
liptical instability [11]. The intensive growth of perturba-
tions inside the hyperbolic braid region of the flow, where
the main vortices are tearing from the cylinder, is consid-
ered as a secondary effect (see argumentation in [7], and
for the wake of a flat plate in [12]). However, it is still
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not obvious that elliptic instability triggers the transition
to three-dimensionality when Re exceeds the critical value
ReA. One can suggest that elliptical instability of the flow
is induced by the instability of the local hyperbolic flow
region downstream, where the perturbations grow inten-
sively. Another possibility is that the presence of several
mechanisms is significant in the process of transition to
three-dimensionality.

In later studies, attempts have been made to localize re-
gions that cause three-dimensional instability of the flow.
In [13] it is shown that for modes A and B the process
of development of three-dimensional perturbations in the
near wake is slightly sensitive to the downstream three-
dimensional flow in the shed vortices. Thus, it is possi-
ble to reject the hypothesis that the transition is induced
by fully shed vortices. It is also shown that one cannot
neglect the impact of the near wake region where vortices
are formed (including the region of intensive perturbations
growth mentioned above). It follows then that the hyper-
bolic flow region has significant influence on the formation
of a three-dimensional flow in the wake. In [10] the regions
causing three-dimensional instability were localized using
structural sensitivity analysis, these results are consistent
with [13].

Detailed information on the processes of formation, self-
sustaining of vortex structures and their development for
modes A and B can be found in numerous research (see, for
instance, the works mentioned above and their literature
reviews). In the present article we involve these results and
hypotheses in the analysis of the mechanisms affecting the
growth and decay of three-dimensional perturbations in
fluid particles. This is done to more deeply understand
the process of development of three-dimensional perturba-
tions, which could help to clarify physical reasons for the
appearance of large-scale (mode A) and small-scale (mode
B) three-dimensional structures.

In our study we consider two flow regimes for ‘pure’
modes A (Re = 220) and B (Re = 300) which are obtained
by reducing the computational domain size along the cylin-
der axis (Section 3.1). These regimes are simulated based
on direct numerical solution of the NavierStokes equa-
tions using the Galerkin least-squares (GLS) finite-element
method on unstructured tetrahedral meshes (Section 2).
Four physical mechanisms responsible for growth/decay of
three-dimensional perturbations (on early stages of devel-
opment) in fluid particles are distinguished (Section 3). In
Section 4 the main results are given: the singled out mech-
anisms that determine the destabilizing effect; regions in
which the growth and decay of three-dimensional pertur-
bations for modes A and B occur; estimates of growth rates
and intervals; time and zones of the most intense growth
of disturbances in the wake.

2. Problem Formulation and Numerical Method

The problem of a transverse viscous flow past an in-
finitely long circular cylinder is considered in the Cartesian

coordinate system (x1, x2, x3) with the axis x3 coinciding
with the axis of the cylinder. The model of a viscous per-
fect gas with constant specific heats, coefficients of viscos-
ity and thermal conductivity is used. The Navier-Stokes
equations governing the fluid flow in primitive variables
Y(x, t) = (p, u1, u2, u3,T )* (* is transposition) can be writ-
ten as

A0Y,t + AiY,i =
(︁
Ki jY, j − Pi

)︁
,i

+ R. (1)

The unknown functions of the time t and coordinates
x = (x1, x2, x3) are the dimensionless pressure p(x, t), ve-
locity u(x, t) = (u1, u2, u3)*, and the temperature T (x, t).
The matrices A0, Ai, Ki j and the vector Pi (i, j = 1, 2, 3)
arise due to the transition from conservative variables to
primitive variables pressure-velocity-temperature (explicit
expressions are given in Appendix A), R is the vector de-
termining the action of external forces. In Eq. (1), the
repeated indices imply summation, and the short notation
for the derivatives is used (·),t = ∂(·)/∂t, (·),k = ∂(·)/∂xk.
All quantities are dimensionless, nondimensionalization

is performed using the following formulas (here, dimen-
sional values are denoted by primes)

t =
U∞t′

d
, x =

x′

d
, p =

p′

ρ∞U2
∞

, u =
u′

U∞
, T =

cVT ′

U2
∞

, ρ =
ρ′

ρ∞
,

For the Reynolds Re, Prandtl Pr, Mach M, and Strouhal
St numbers the following expressions are used

Re =
ρ∞U∞d

µ
, Pr =

µcp

κ
, M =

U∞
c∞

, St =
f d

U∞
.

Here, d is the diameter of the cylinder; ρ∞, p∞, U∞ are
the free-stream density, pressure, and velocity; κ, µ are the
thermal conduction and viscosity coefficients; cV , cp are
the specific heats at constant volume and pressure; c∞ =√︀
γp∞/ρ∞ is the free-stream sonic velocity; γ = 1.4 is the

specific heat ratio; and f is a characteristic vortex shedding
frequency. In the following text M = 0.1 and Pr = 0.72.
With this choice, the present results are in good agreement
with the results obtained for the case of an incompressible
viscous fluid (see Section 2.3).

For the numerical solution of the problem, an un-
bounded physical domain is replaced by a finite region
Σ by adding artificial boundaries (Fig. 1). Because the
exact conditions for the variables at these boundaries are
unknown, their position is chosen so that the distortion of
the flow in the region of interest is small. In this paper,
the input Γin, output Γout, and side Γside boundaries are
located at x1 = −20, x1 = 50, and x2 = ±20. Different
positions of the end face planes Γend, x3 = ±L/2 are con-
sidered, which makes it possible to influence the structure
of a three-dimensional flow (the choice of L is discussed
further in Section 3.1).

2.1. Initial and Boundary Conditions

At the initial instant of time t = 0, it is assumed that
in the entire field u = 0, p = p0 = 1/(γM2) and T = T0 =

1/[γ(γ − 1)M2].
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Fig. 1: Schematic representation of the computational domain in planes x1 x2 (a) and x1 x3 (b).

At the inflow boundary Γin: u = V(t), p = p0, T = T0.
Here, V(t) = (V1,V2,V3)* determine the law of cylinder ini-
tial acceleration from rest to motion with constant veloc-
ity (in the inertial frame of reference associated with the
resting flow). In the frame of reference associated with the
cylinder the inertial forces must also be taken into account
in (1): F = (V1,t,V2,t,V3,t)*. If Vi(t) = δ1i, then the problem
is equivalent to the instantaneous onset of the motion of
the cylinder in a fluid at rest. As a result, waves of pressure
appear in the computational domain. Their reflection from
the far boundaries slows down and distorts the process of
reaching a periodic regime. Therefore, at the initial time
interval 0 6 t 6 t*, the velocity V1(t) is smoothly changed
from V1(0) = 0 to V1(t*) = 1, then V1(t) = 1 for t > t*. In
addition, V2(t) , 0 for t ∈ (0, t*) (V2(t) = 0 for t > t*) —
this is a violation of the problem symmetry with respect
to the plane x2 = 0, which reduces the time of reaching the
periodic regime. The third component V3(t) = 0 for t > 0.
In the presented calculations t* = 5.
At the side and outflow boundaries Γside∪Γout: ∂ui/∂n =

0, p = p0, T = T0, n is a normal vector.
At the end face planes Γend: ∂u1/∂n = ∂u2/∂n = 0, u3 =

0, ∂T/∂n = 0. These expressions are the conditions of
symmetry (another interpretation is: the conditions for
the absence of a flow of mass and heat across the planes
Γend and the absence of tangential stresses).

On the cylinder surface, the velocity no-slip u = 0 and
adiabatic-wall (zero heat flux) conditions ∂T/∂n = 0 are
prescribed.

2.2. Finite Element Formulation

Consider a partition of computational domain into tetra-
hedra elements (or triangles in the two-dimensional case),
Σ =

⋃︀nT
e=1 Te. Let 𝒱h,𝒲h be finite-dimensional spaces of

continuous piecewise linear trial and weighing functions,
respectively, constructed in the standard way for the fi-
nite element method. Then the stabilized finite element

method GLS (Galerkin Least-Squares) for the equations
(1) with boundary and initial conditions (Section 2.1) is
formulated as follows: find Yh ∈ 𝒱h such that for any
Wh ∈ 𝒲h

∫︁
Σ

Wh · (Ah
0Yh

,t + ̃︀Ah
i Yh

,i − Rh) + Wh
,i · (Kh

i jY
h
, j)dΣ

−

∫︁
∂Σ

Wh · (Kh
i jY

h
, jni)dΓ

+

nT∑︁
e=1

∫︁
Te

(L*Wh) · τs(LYh − Rh)dΣ = 0,

here, the matrix τs defines stability properties of the

method; L = Ah
0∂/∂t + ̃︀Ah

i ∂/∂xi − ∂/∂xi(Kh
i j∂/∂x j) is a differ-

ential operator; ̃︀Ah
i Yh

,i = Ah
i Yh

,i + Ph
i,i; the superscript symbol

‘h’ denotes that the values are calculated based on an ap-
proximate solution. The additional term (the latter) is
introduced in the standard Galerkin variational equation
to improve the stability of the numerical method (see,
for instance the review [14]). Implicit Euler method for
the time-derivative is applied. The original problem is re-
duced to a system of nonlinear algebraic equations, which
is solved by Newtons iterative method with the general-
ized minimum-residual algorithm (GMRES). More details
on the use of the present numerical approach can be found
in [15–18].

2.3. Influence of the Numerical Parameters

To justify the sizes of the computational domain and the
steps of the computational grid, we consider the results ob-
tained on 6 two-dimensional grids (Table 1). Three nested
subregions with different grid steps (transitions between
subregions are smooth) are distinguished in the computa-
tional domain: the far wake (x1 > −5, |x2| < 7.5) with step
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hw, the near wake (−1.5 < x1 < 11, |x2| < 2) with step hnw

and a subregion near the surface of the body with step hb.
Outside the far wake region, the step is hg. The grids A1

2D,
A2

2D, A3
2D are distinguished by the space step; A4

2D, A4
2D, A6

2D
are distinguished by the sizes of the domain.

The following characteristics were selected as criteria for
determining the degree of influence of the distance from
the cylinder to the far borders and grid steps: mean and
root-mean-square values of the drag coefficient CD, δCD,
root-mean-square value of the lift coefficient δCL, Strouhal
number St, and flow patterns in a rectangular region −1 6
x1 6 6, −2 6 x2 6 2.
Table 1 shows the results of calculating the forces and

the Strouhal number for Re = 300. The data obtained on
the grid A2

2D, differ by less than 5% (except for δCD on
the coarse grid A1

2D — the difference here is 5.6%) from
the results on the grids A1

2D, A3
2D, A4

2D, A5
2D, A6

2D. The

differences in CD and St with values from [2, 19] are about
1% (CD = 1.3769, St = 0.2113, relationship St(Re) from
[2] is explicitly given in [20]). Decrease in time step by
a factor of two (from ∆t = 0.005 to ∆t = 0.0025) changes
CD and St by less than 0.3% and δCL by less than 1%. A
comparison of the pressure fields p for grids A1

2D, A2
2D and

A3
2D (Fig. 2 a-b) also shows the possibility of using a grid

A2
2D for a qualitative study of the flow in the near-wake

region of interest.
Further we use three-dimensional grids similar to the

A2
2D in the sections x3 = const, i.e. hb = 0.01, hnw = 0.05,

hw = 0.15, hg = 0.3 and time step ∆t = 0.005. A com-
parison of the results of calculating the two-dimensional
flow regime for Re = 200 in two- and three-dimensional
(for L = 3) formulations is given in Fig. 2c, the difference
between CD, δCD, δCL, St is less than 0.5%.
Based on these results and the consistency of the fur-

ther results with the data of other authors (see the next
two sections) we believe that the accuracy should be suf-
ficient for a qualitative description of the mechanisms of
transition to three-dimensionality.

3. Identification of Growth and Decay Regions and
Responsible Mechanisms

This section describes the flow regimes under consid-
eration and the approach on the basis of which the
mechanisms and regions determining the growth and de-
cay of small three-dimensional perturbations of a two-
dimensional periodic base flow are singled out. In the next
section (Section 4), this approach is used to analyze the
process of transition to three-dimensionality for modes A
and B. In these sections we describe the flow in terms of
velocity u and vorticity ω = ∇ × u assuming that the flow
is incompressible (in calculations M = 0.1 therefore com-
pressibility effects are insignificant).

3.1. The considered flow regimes

For a fixed Reynolds number, the wavelengths λ of lin-
early unstable perturbations for modes A and B belong to

the intervals 0 < λmin
A < λ < λmax

A and 0 < λmin
B < λ < λmax

B ,
see [2]. The symmetry conditions at the end faces of the
computational domain (Section 2.1) impose restrictions
on the set of admissible linearly unstable perturbations:
λ = 2L/n, n = 1, 2, ... By decreasing the distance L be-
tween the end planes confining the flow, the set of linearly
unstable perturbations can be reduced (up to an empty
set). Taking this into account, the length of the cylinder
L is chosen so that the constraints are satisfied by a single
value λ, which is close to the critical (the most unstable)
values λA ≈ 4 and λB ≈ 0.8 [2]. Further in the article we
will consider the following two flow regimes (Fig. 3).

∙ Mode A for Re = 220 and L = 2.0.

∙ Mode B for Re = 300 and L = 0.4.

For these cases the behavior of half of the perturbations
wavelength along the x3 axis is modeled in the computa-
tional domain. In a real flow for Re = 300 mode B develops
together with mode A, but due to the specified length of
the computational domain along the x3 axis the unsta-
ble perturbations of mode A are eliminated and the ‘pure’
mode B can be modeled.

In Fig. 3 for the two modes A and B under considera-
tion, the graphs of CL(t) and the isosurface u3 = ±const and
ω3 = ±const are given. The flow fields are given for two in-
stants of time corresponding to the initial and late stages of
the development of the three-dimensional instability. At
relatively short times for mode A we observe a distinct
symmetry with respect to the plane x3 = 0 (Fig. 3d). For
the developed flow the three-dimensional pattern is dif-
ferent and more complicated along the x3 axis (Fig. 3h).
For mode B, the flow structure is similar for large and
small t (Fig. 3 e, f, i, j). In this case, the nonlinear stage
of perturbation development does not violate their sym-
metry along the x3 axis and slightly distorts their spatial
structure in comparison with the linear stage. We are in-
terested in the causes of the emergence of modes A and B,
so we will consider the development of a three-dimensional
flow at times close to t = 70 for mode A and to t = 38
for mode B (Fig. 3 a, b). At these times the flow differs
from the two-dimensional flow sufficiently, so that small
three-dimensional perturbations are distinguishable from
computational errors.

We will assume that the causes of the appearance of
modes A and B are flow properties in the region of forma-
tion of vortices in the near wake, and the development of
three-dimensionality downstream is a consequence of the
instability of the flow arising near the cylinder. This is
confirmed by the results [13], which show that for modes
A and B, the periodic flow in the developed vortex wake is
stable with respect to linear three-dimensional perturba-
tions. Therefore, in what follows we restrict ourselves to a
consideration of the region near the cylinder (0.5 < x1 < 3).

3.2. Extraction of Linear Perturbations
When the three-dimensional perturbations are small (at

the initial stages of the development of the flow with re-
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Win ×Wout × H hb hnw hw hg CD δCD δCL St

A1
2D 20 × 50 × 20 0.02 0.1 0.3 0.6 1.3366 0.0506 0.5965 0.2080

A2
2D 20 × 50 × 20 0.01 0.05 0.15 0.3 1.3564 0.0536 0.6234 0.2089

A3
2D 20 × 50 × 20 0.005 0.025 0.075 0.15 1.3659 0.0558 0.6361 0.2094

A4
2D 20 × 100 × 20 0.01 0.05 0.15 0.3 1.3615 0.0544 0.6289 0.2094

A5
2D 40 × 50 × 20 0.01 0.05 0.15 0.3 1.3513 0.0536 0.6218 0.2087

A6
2D 20 × 50 × 40 0.01 0.05 0.15 0.3 1.3616 0.0550 0.6310 0.2093

Table 1: Parameters of two-dimensional computational grids and their effect on the calculation results for Re = 300. Win, Wout and H are the
distances from the center of the cylinder to the inlet (Γin), outlet (Γout), and side (Γside) boundaries of the computational domain.

(a) Re = 300, grids A2
2D and A1

2D. (b) Re = 300, grids A2
2D and A3

2D. (c) Re = 200, 2D and 3D calculations.

Fig. 2: Influence of the computational grid on the pressure field p in the near wake. Dashed lines are calculations on a two-dimensional
grid A2

2D; solid lines are calculations on two-dimensional grids A1
2D (a), A3

2D (b) and on a three-dimensional grid with L = 3 (c). The pressure
isolines correspond to the values p = 70.5, 70.6, . . . , 71.9. For the three-dimensional case, the lines in the section x3 = 0 are shown. The time
corresponds to the maximum value of the lift coefficient.

spect to time), by virtue of the symmetry conditions on
the end planes, approximate expressions for velocity and
vorticity fields can be used:

u(x1, x2, x3, t) = U(x1, x2, t) + u′(x1, x2, x3, t),
ω(x1, x2, x3, t) = Ω(x1, x2, t) + ω′(x1, x2, x3, t),
u′ = (v1, v2, 0)* sin γx3 + (0, 0, v3)* cos γx3,

ω′ = (ζ1, ζ2, 0)* cos γx3 + (0, 0, ζ3)* sin γx3,

(2)

here, U(x1, x2, t) = (U1,U2, 0)* and Ω(x1, x2, t) = (0, 0,Ω)*

are velocity and vorticity of the base flow; u′ and ω′ are
small perturbations; vi = vi(x1, x2, t) and ζi = ζi(x1, x2, t), i =

1, 2, 3; γ = π/L. The functions vi and ζi can be found using
the Fourier series expansion of the calculated solution of
the three-dimensional problem. The possibility of using
relations (2) for the regimes and stages of development of
the flow considered in this work was verified by comparison
of the total and truncated perturbation fields.
The fields of small three-dimensional perturbations of

modes A and B can also be found in two steps: the search
for the base flow solution (the solution of the problem in a
two-dimensional formulation) and the solution of the spec-
tral problem arising after the linearization of the three-
dimensional Navier-Stokes equations for perturbations. In
this manner, perturbation fields were found numerically
in the process of applying the Floquet theory in the paper
[2]. Our results for early stages of instability development
(Fig. 3 c-f) are consistent with the structure of linear three-
dimensional perturbations obtained in [2].

3.3. Identification of Regions and Mechanisms

Further we derive the system of equations for small per-
turbations in terms of velocity and vorticity. The lineariza-
tion of the vorticity transport equation with respect to the
perturbations leads to the relation

Dω′

Dt
= −(u′ · ∇)Ω + (ω′ · ∇)U + (Ω · ∇)u′ +

1
Re
∇2ω′, (3)

here, D/Dt = ∂/∂t + u · ∇ ≈ ∂/∂t + U · ∇ is the substantial
derivative. Using Eq. (2) and excluding v3, ζ3 from the
equations we obtain a closed system on ζ(x1, x2, t) = (ζ1, ζ2)*

and v(x1, x2, t) = (v1, v2)*:

Dζ
Dt

= γΩv + (ζ · ∇)U +
1

Re

(︁
∇2ζ − γ2ζ

)︁
, (4)

γζ = (∇ · v,2 − γ2v2, γ
2v1 − ∇ · v,1)*. (5)

All functions in these equations depend only on x1, x2,
t and vectors are assumed to be two-dimensional. The
perturbation components along the x3 axis can be found
from the relations γv3 = v1,1 + v2,2 and γζ3 = −ζ1,1 − ζ2,2.

One can rewrite Eq. (4) in a more convenient form for
analysis. For this we denote the positive eigenvalue of the
strain rate tensor as S and Φ is the angle between the
principal direction and the x1 axis. We write the vectors
v, ζ in terms of the polar representation, i.e.

ζ = ζ(cos θ, sin θ)*, v = v(cos θ1, sin θ1)*. (6)
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(g) Mode A, t = 308.5 (h) Mode A, t = 308.5 (i) Mode B, t = 143.5 (j) Mode B, t = 143.5

Fig. 3: The flow regimes considered in the present paper: on the left — mode A for Re = 220, L = 2; on the right — mode B for Re = 300,
L = 0.4. (a), (b) — the dependence of the lift coefficient on time for a three-dimensional (solid lines) and two-dimensional flow (dashed
lines). The initial (c-f) and late (g-j) stages of three-dimensional flow development are shown. Depicted isolines and isosurfaces correspond
to constant values of u3 (black and gray colors) and ω3 (red color): u3 = ±0.008 (c-d), u3 = ±0.002 (e-f), u3 = ±0.1 (g-h), u3 = ±0.02 (i-j); ω3 = ±1
(c-j). The data in the x1 x3-plane (d, f, h, j) are duplicated along x3-axis, in fact, the calculated domain is |x3 | 6 L/2.

(a) Scheme for notations (b) Action of 𝒮ζ , 𝒮θ (c) Action of 𝒱ζ , 𝒱θ

Fig. 4: A schematic description of the action of physical mechanisms in Eqs. (7) and (8). In the present work the terms ’longitudinal’ and
’streamwise’ mean the projection of vectors onto the plane x1 x2.

It is convenient to introduce additional angles: angle α
between the principal axis and ζ, α = θ − Φ and angle
β between vectors ζ and v, β = θ1 − θ (Fig. 4). After

transformations Eq. (4) takes the form

D ln ζ
Dt

= S cos 2α⏟    ⏞    
𝒮ζ

+
γΩv
ζ

cos β⏟       ⏞       
𝒱ζ

+
1

ζ2Re

(︁
ζ · ∇2ζ − γ2ζ2

)︁
⏟                       ⏞                       

𝒟ζ

, (7)
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Dθ
Dt

= −S sin 2α⏟      ⏞      
𝒮θ

+
γΩv
ζ

sin β⏟      ⏞      
𝒱θ

+
1

ζ2Re

(︁
ζ × ∇2ζ

)︁
· e3⏟                    ⏞                    

𝒟θ

+
1
2

Ω⏟ ⏞ 
ℛθ

.

(8)
Here, e3 is the unit vector along the x3-axis. There is a
linearized substantial derivative on the left-hand side in
Eqs. (7) and (8). This form of equations for the pertur-
bations allows us to consider the quantities ζ and θ in the
Lagrangian description as characteristics associated with
a particular fluid particle of the base flow. The rate of
amplitude or angle change in a fluid particle can be de-
scribed with 3 or 4 terms, having a clear connection with
the basic physical mechanisms that determine the develop-
ment of vorticity in the flow. Each term on the right-hand
side of Eq. (7) tends to increase the amplitude ζ of the
perturbations when it is positive and the more it is, the
more intense the growth is. If the term is negative, then it
tends to reduce ζ. Let us consider the action of each term
separately.

The first term (𝒮ζ , 𝒮θ) describes the mechanism of vor-
ticity change due to the action of strain rate tensor field of
the base flow. The amplitude ζ tends to grow if the angle
between the vorticity vector ζ and the principal axis (S )
is less than π/4 (filled regions in Fig. 4b) and θ is changed
to reduce the angle between the principal axis and vector
ζ.

The second term (𝒱ζ , 𝒱θ) is related to shear deforma-
tion of the base flow vortex lines. A spanwise shear de-
forms the vortex lines of the base flow and causes gener-
ation of streamwise vorticity as is schematically shown in
Fig. 4c. Thus, γΩv∆t is vorticity of the base flow trans-
ferred to the plane x3 = 0 under the influence of shear
v sin γx3 , 0 during the time interval ∆t. The amplitude ζ
tends to grow if the transferred vorticity has positive pro-
jection on the vorticity vector ζ (filled region in Fig. 4c).
The angle θ is increased or decreased according to the di-
rection of the transferred vorticity of the basic flow to the
spanwise plane (more precisely, according to the sign of
Ω sin β).
The third term (𝒟ζ , 𝒟θ) describes the action of viscous

diffusion, which stabilizes perturbations, as will be seen
below.

The fourth term (ℛθ) is the rotation of a fluid particle as
a rigid body. It changes only the direction of the vorticity
vector.

Having numerical solutions in a three-dimensional for-
mulation, we can find all necessary values on the right-
hand side, and we can assess to what extent and in what
regions each physical mechanism has a stabilizing or desta-
bilizing effect on the flow. In this paper we consider fields
for mechanisms of amplitude change, Eq. (7), however, the
same analysis can be applied to the equation for angle,
Eq. (8).

The behavior of the terms in Eq. (7) can be estimated
in two limiting cases γ → 0 and γ → ∞. Parameter γ does
not influence the first term (𝒮ζ). The second term (𝒱ζ)

vanishes as γ → 0 and approaches Ω cos β as γ → ∞ (to
estimate the order of v/ζ, Eq. (5) is used). The third term
has two limits ζ ·∇2ζ/(ζ2Re) and −γ2/Re as γ → 0 and γ →
∞. These estimates give a rough idea of the influence of the
wavelength of perturbations on various terms in Eq. (7).
However, it does not give unambiguous conclusions about
the influence of the mechanisms at the wavelengths close
to the critical one. A more detailed study of the effect of γ
is needed, which is beyond the scope of the present paper.

Consider the idealized situation, when in the entire flow
Ω, S and Φ are constants, the choice of the coordinate
system allows us to consider Φ = 0. This flow is an exact
solution of the Navier-Stokes equations [21]. If |Ω|/2 > S ,
then rotation prevails and the streamlines are similar el-
lipses; if |Ω|/2 < S , then the stretching rate prevails and
the streamlines are hyperbolas; the equality |Ω|/2 = S cor-
responds to the Couette flow. The three-dimensional in-
stability of two-dimensional flows of this type was investi-
gated in [11, 22–24]. These results can be used to estimate
the wavelengths of developing three-dimensional pertur-
bations for a two-dimensional flow with localized vorticity
[25]. Application of these theoretical results to the insta-
bility of a flow around a cylinder is discussed in [4, 6]. It
was shown that mode A instability resembles elliptic in-
stability judging by spatial structures and estimations of
wavelengths and growth rates. Also, it was suggested that
mode B is caused by hyperbolic instability of the braid
shear layer.

In a general case, the influence of the base flow on the
behavior of perturbations in a fluid particle is determined
by three fields Ω, S , Φ depending on the coordinates, see
Eqs. (7) and (8). The relation between Ω and S at each
point determines the type of instantaneous local flow in the
neighborhood of this point. For an incompressible fluid,
these regions can be distinguished by considering the sign
of the invariant

Q = −
1
2
trace(∇U)2 =

1
4

Ω2 − S 2, (∇U)i j = Ui, j. (9)

For Q > 0 (the rotation prevails) the singular points are
center-type. For Q < 0 (the stretching prevails) the sin-
gular points are saddle-type. The regions with Q > 0 and
Q < 0 are called elliptic and hyperbolic flow regions re-
spectively. The locations of these regions and the domains
in which the perturbations are concentrated are shown in
Fig. 5 for modes A and B.

4. Comparative Analysis of Mechanisms

On the basis of the data on the direction of the vectors
ζ and their amplitude a scheme of the development of per-
turbations ζ is constructed in Fig. 6. The arrows schemat-
ically determine the positions of the local perturbation re-
gions and the direction of the vectors ζ. To estimate the
growth rate we also consider the variation in time of the
maximum value ζmax of ζ in the local perturbed region,
Fig. 7. The influence of each mechanism is distinguished
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(a) Mode A, t = 70 (b) Mode A, t = 71 (c) Mode A, t = 72 (d) Mode A, t = 73

(e) Mode B, t = 38 (f) Mode B, t = 39 (g) Mode B, t = 40 (h) Mode B, t = 41

Fig. 5: Evolution of perturbed flow regions for modes A (a-d) and B (e-h). Filled gray zones are the ζ field for ζ & 0.2 max ζ (the larger ζ, the
darker the color), solid lines are the lines of |Ω| = const (base flow), dashed lines are the lines of Q = 0 (base flow).

in Figs. 8 and 9, they show the variation of D(ζ2/2)/Dt,
and the contribution of each mechanism on the right-hand
side of Eq. (7) to growth and decay of perturbations for
two moments in time t = 71, 72 for mode A and t = 39, 40
for mode B (it corresponds to the second and the third
rows on scheme in Fig. 6). Below we discuss stages of
the development of perturbations for modes A and B with
respect to these data.

4.1. The Evolution of the Perturbed Regions: mode A

4.1.1. Stage I: Perturbations originate and grow in a form-
ing vortex

In Fig. 5b one can see that a new perturbed region ap-
pears (x1 ≈ 1, x2 ≈ −0.2) in the bottom vortex in the begin-
ning of its formation (the time corresponds to the second
row of the scheme in Fig. 6a, see arrow 12). The region is
growing in the elliptic part of the flow until the forming
vortex begins to separate from the cylinder (Fig. 5d for
the bottom vortex and arrow 14 in Fig. 6a).
The origin of perturbations in a new vortex happens

mostly because of term𝒱ζ (see mechanisms fields at t = 71,
Fig. 8a, c). That is why the appearance of new perturba-
tions in a forming vortex (Fig. 5b) is connected with the
shear deformation of the main vortex, and apparently can
be induced by the perturbed region in the previous (down-
stream) vortex, as described in [4]. Subsequent growth of
three-dimensional structures is mostly related to the vor-
tex line stretching, 𝒮ζ (Fig. 8b, f). However, shear defor-
mations of the vortex lines of the base flow 𝒱ζ make a
significant contribution, both destabilizing and stabilizing
(Fig. 8c, g). This contribution of the mechanism 𝒱ζ is an
indirect confirmation of the well-known property of mode

A — the emergence of a distinct wave-like curvature of
the spanwise vortices (Fig. 3h). The viscous diffusion 𝒟ζ

suppresses perturbations (Fig. 8d, h).
Perturbations grow at both stage I and II (Fig. 7a). One

can see a slight change in the growth rate at (t− t0)/τ ≈ 0.4
(point 14 in Fig. 7a). This change takes place when the
perturbations are leaving the elliptic region and the second
stage begins.

4.1.2. Stage II: Perturbations move outside the main vor-
tex and intensively grow in the region of high defor-
mation rates

The formed longitudinal vorticity is stretching in the
braid region, where the main vortex is separated from the
cylinder (arrow 22 in Fig. 6a). It approaches a new form-
ing vortex upstream and induces the origin of a new re-
gion of perturbations (arrow 12). This new region goes
through all these stages again. Based on the experimental
results, a self-sustained process for mode A, where pertur-
bations of the downstream vortex generate perturbation
in the upstream vortex by Biot-Savart induction, was dis-
cussed in [4]. The head of the vortex loop (emerged from
the downstream main vortex) is transferred upstream (rel-
ative to the main vortex) by the reversed flow, and then
modifies the flow in the next forming vortex. This process
establishes the spatial structure of mode A. Numerical re-
sults for the evolution of the disturbed region of mode A
(Fig. 8) have clear correlation with this physical interpre-
tation. The vortex loop development in our formulation
corresponds to the evolution of ζ at stage II (in the hyper-
bolic region).

The two stages of perturbations growth were discussed
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(a) Mode A (b) Mode B

Fig. 6: Schematic representation of the perturbations evolution for modes A (a) and B (b): vortices of the base flow and perturbed regions.
The arrows show the regions where perturbations are concentrated and the orientation of vectors ζ. Numbers with subscripts correspond to
the points in Fig. 7 (a number indicates the relative position of the region, a subscript indicates the row, i.e. a moment in time). In the
second and third row, selected rectangular regions correspond to ones shown in Figs. 8 and 9.
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Fig. 7: Change of local maximum of ζ in the perturbed region of the flow for modes A (a) and B (b). Marked points correspond to the
perturbed regions shown in Fig. 6. Value t0 corresponds to the local extrema of lift coefficient CL and τ is the vortex shedding period. Dotted
lines show the estimates of the growth rates.

earlier in [7]. However, the second stage has been per-
ceived as being of secondary importance and the elliptic
instability (I stage) was considered as the main reason for
the appearance of mode A. Our qualitative data for ζ(t)

change in Fig. 7a show that at stage II the growth rate
of linear perturbations is slightly greater. That is why it
is not obvious which mechanisms trigger the transition to
three-dimensionality when the Reynolds number exceeds
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Rate of change of ζ2/2

(a) t = 71: D(ζ2/2)/Dt

Vorticity ‘stretching’

(b) t = 71: 𝒮ζζ2

Vorticity ‘tilting’

(c) t = 71: 𝒱ζζ
2

Vorticity ‘diffusion’

(d) t = 71: 𝒟ζζ
2

(e) t = 72: D(ζ2/2)/Dt (f) t = 72: 𝒮ζζ2 (g) t = 72: 𝒱ζζ
2 (h) t = 72: 𝒟ζζ

2

(i) Color map

Fig. 8: The rate of variation of perturbation amplitude (multiplied by factor ζ) Dζ/Dt (a, e) in the fluid particle for mode A and the
contribution of three mechanisms (multiplied by factor ζ2): vorticity ‘stretching’ 𝒮ζ (b, f), ‘tilting’ 𝒱ζ (c, g), ‘diffusion’ 𝒟ζ (d, h). Dashed
lines are the lines of Q = 0. The time corresponds to the second (t = 71) and third (t = 72) rows on the scheme in Fig. 6a. Limit values on the
color map (i) are not the maximum and minimum of functions: function values greater than the upper limit (or less than the lower limit) are
filled with one color corresponding to this limit.

the critical value: the instability of the flow in the elliptic
region or in the hyperbolic region, or the reason for the
transition is more complex and this instability cannot be
explained considering only one of these simplified types of
flow. We believe that it is necessary to take into account
the second stage of perturbations development to estimate
the critical Reynolds number by constructing models based
on simplified flows. The necessity of consideration of stage
II is implicitly confirmed by the work [13]. It was shown
that the region of high deformation rates in the wake can-
not be excluded from the subregion of local Floquet sta-
bility analysis to obtain the same dependence of Floquet
multipliers on wavenumber as for the whole region of the
flow.

4.1.3. Stage III: Perturbations are fading out

The considered region is decaying in the developed vor-
tex street (Fig. 7a, stage III). However, it should be noted,
that one can see two moments in time when new pertur-
bations emerge (Fig. 6a) — upstream (arrow 12, discussed
above) and downstream (arrow without a number inside
the second vortex in the fourth row) from the considered
perturbation region. The longitudinal vorticity formed
downstream inside the elliptic region is growing while the

considered perturbations are decaying downstream. From
[13] it is known, that the confined flow in the wake behind
the formation region is stable. That is why we can suggest
that ‘elliptic instability’ type three-dimensional structures
in the developed vortex street are induced and ‘supported’
by perturbed regions generated upstream in the vortex
formation region (arrows 31–34, 41–44 in Fig. 6a). In the
same manner appearance of perturbations in the hyper-
bolic braid regions can be the reason for the emergence of
elliptic-kind instability in the vortex cores of the forming
vortices upstream.

4.2. The Evolution of the Perturbed Regions: mode B

4.2.1. Stage I: Perturbations are growing

There is only one interval of linear growth (Fig. 7b).
It takes place in the hyperbolic region, where the main
vortex is separated from the cylinder (see arrows marked
13 and 21 in Figs. 6b). The interval of growth (≈ 0.25τ,
Fig. 7b) is shorter than for mode A (& 0.5τ, Fig. 7a). The
scheme in Fig. 6b (row 3) shows that the formed longitudi-
nal vorticity 23 is close to the new forming perturbations 13
and can influence the spatial structure of these perturba-
tions. It was noticed in [4] and the self-sustained process
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Rate of change of ζ2/2

(a) t = 39: D(ζ2/2)/Dt

Vorticity ‘stretching’

(b) t = 39: 𝒮ζζ2

Vorticity ‘tilting’

(c) t = 39: 𝒱ζζ
2

Vorticity ‘diffusion’

(d) t = 39: 𝒟ζζ
2

(e) t = 40: D(ζ2/2)/Dt (f) t = 40: 𝒮ζζ2 (g) t = 40: 𝒱ζζ
2 (h) t = 40: 𝒟ζζ

2

(i) Color map

Fig. 9: The rate of variation of perturbation amplitude (multiplied by factor ζ) Dζ/Dt (a, e) in the fluid particle for mode B and the contribution
of three mechanisms (multiplied by factor ζ2): vorticity ‘stretching’ 𝒮ζ (b, f), ‘tilting’ 𝒱ζ (c, g), ‘diffusion’ 𝒟ζ (d, h). Dashed lines are the
lines of Q = 0. The time corresponds to the second (t = 39) and third (t = 40) rows on the scheme in Fig. 6b. Limit values on the color map
(i) are not the maximum and minimum of functions: function values greater than the upper limit (or less than the lower limit) are filled with
one color corresponding to this limit.

was described: how previously formed longitudinal vor-
tices cause emergence of perturbations in the braid shear
layer. Figs. 5e-h and 9a, e clearly show that the previ-
ously formed perturbed region is transferred upstream to
the braid shear layer and it is amplified there. It could also
be seen in Fig. 9 that because of the viscous diffusion 𝒟ζ

the amplitude ζ decreases in fluid particles placed in the
upstream part of the perturbed region (see dark regions in
Fig. 9a, d and e, h). The stage of growth is repeated each
half of the period.

Although the growth of the perturbations of mode A
at stage II and mode B occurs during the detachment of
the vortex from the body, the sub-regions of the hyper-
bolic part of the flow and the time intervals of intensive
growth differ. Mode A is growing at the initial stages of
vortex detachment at t ≈ argmax|CL(t)| (see points 14, 22
in Fig. 7a) in the subregion near the boundary with the
elliptical part of the vortex. While mode B is growing at
t & argmax|CL(t)| (see points 13, 21 in Fig. 7b) upstream.

The process of perturbations development is mainly ob-
served outside the elliptic regions (Fig. 5). All the growth
is mostly caused by the vortex line stretching mechanism
𝒮ζ (Fig. 9). In the upstream part of the perturbed re-
gion the rate of amplitude change is negative because of

the action of viscous diffusion, 𝒟ζ (Fig. 9d, h), which pre-
vents the growth of perturbations spreading upstream by
the reversed flow. However, there is some region of per-
turbation upstream (see Fig. 5a-h), which is transferred
downstream inside the main vortex and fading out. The
presence of the secondary region ζ > 0 near the cylinder is
caused by the separation of perturbations upstream. The
fact that this region exists in the flow during a sufficiently
large time interval is associated with the local growth of
these perturbations near the cylinder. In Fig. 9c, g one
can see, that the destabilizing action of mechanism 𝒱ζ

is most pronounced inside the elliptic part of the flow,
where these perturbations exist. In the process of inten-
sive growth in the hyperbolic region shear deformations of
the vortex lines 𝒱ζ play a noticeable role in ζ reduction
(Fig. 9g).

4.2.2. Stage II: Perturbations are fading out

As a result of stretching in the hyperbolic part of the
flow, elongated regions of longitudinal vorticity are formed
in the wake (arrows 23, 24, 31–34 in Fig. 6b). These regions
are fading out, while they are traveling downstream in the
formed vortex street, see corresponding points in Fig. 7b.
Stabilization of the flow is mostly related to the action of

11



viscous diffusion, 𝒟ζ (Fig. 9d, h).

5. Conclusions

The system of equations governing the evolution of small
longitudinal perturbations of velocity and vorticity vectors
can be interpreted as follows: perturbations change in a
fluid particle can be caused by the action of the following
four mechanisms (see Eqs. (7) and (8)).

(I) Stretching of the vortex lines of disturbances by the
base flow (𝒮ζ , 𝒮θ).

(II) Shear deformations of the vortex lines of the base
flow by perturbations (𝒱ζ , 𝒱θ).

(III) Viscous diffusion of perturbations (𝒟ζ , 𝒟θ).

(IV) Solid-state rotation of fluid particles (ℛθ).

This interpretation is used to obtain new details of the
transition process by analyzing the impact of each mech-
anism and distinguishing the regions of the flow, where
these mechanisms manifest themselves.

For the considered regimes, the interval of perturba-
tions growth is approximately twice as large for mode A
as for mode B. It was shown that modes A and B have
two and one stages of perturbations linear growth, respec-
tively. Two stages of growth for mode A are related to
the development of perturbations in parts of the flow with
different properties. At the first stage perturbations are
transferred inside the elliptic region, at the second stage
they are entering the hyperbolic region of the braid shear
layer. The rate of growth for the second stage is higher.
Perturbations of mode B are developed mostly outside the
elliptic region.

The main mechanism responsible for the growth of per-
turbations for both modes is stretching of the vortex lines
𝒮ζ , which produces a significant impact on the growth rate
both in the hyperbolic and elliptic parts of the flow. Shear
deformations of the vortex lines of the base flow 𝒱ζ are re-
sponsible for the initial growth of perturbations inside the
forming vortices of the base flow for mode A. However, the
conditions for the appearance of these perturbations could
be created by the previously formed longitudinal vortic-
ity in the hyperbolic region (and not by the elliptic in-
stability of vortex cores by itself), similar to the process
of induction of ’elliptic’ instability in the formed vortex
street. For mode B term 𝒱ζ produces mainly a stabiliz-
ing effect. For both modes mechanism 𝒟ζ stabilizes the
three-dimensional structures, mechanism ℛθ has influence
on the orientation of perturbations in a fluid particle and
not on the amplitude (only indirect influence is possible).

The results obtained in the present work can be used in
constructing simplified models of the process of transition
to three-dimensionality, because it allows to localize the
regions of development of instability in time and space,
and also to estimate the degree of influence of the terms
in the equations before making simplifying assumptions.

The presented approach of transitional mechanisms
analysis is not restricted to the wake behind a cylinder

and can be applied to other problems on the transition to
three-dimensionality. It should be noted that there is a
certain difference between this approach of studying lin-
ear perturbation development and Floquet analysis. Flo-
quet analysis gives a spectrum describing the behavior of
perturbations of a special form. In our approach, we are
solving the initial-value problem. As a result, we have the
evolution of the linear part of real perturbations. These
perturbations theoretically can be described as a linear
combination of Floquet modes, but for this purpose it
is necessary to know more than only the most unstable
one. The present approach also gives an idea of which of
the physical mechanisms is responsible for the process of
destabilization (or stabilization) of the flow.

Acknowledgement

The research is carried out using the equipment of the
shared research facilities of HPC computing resources at
Lomonosov Moscow State University. This work was sup-
ported by the grant of the Russian Foundation for Basic
Research No. 15-01-05186 and grant of the President of
the Russian Federation for young scientists (Ph.Ds.) No.
1798.2017.1.

Appendix A. The Navier-Stokes equations in
primitive variables

The matrices in Eq. (1) take the following form:

A0 =
1

(γ − 1)T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 −

p
T

u1 p 0 0 −
pu1
T

u2 0 p 0 −
pu2
T

u3 0 0 p −
pu3
T

E pu1 pu2 pu3 −
pu2

2T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

Ki j =
1

Re

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 k11

i j k12
i j k13

i j 0
0 k21

i j k22
i j k23

i j 0
0 k31

i j k32
i j k33

i j 0
0 ks1

i j us ks2
i j us ks3

i j us
γδi j

Pr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ai =
1

(γ − 1)T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ui pδ1i pδ2i

uiu1 pui(1 + δ1i) pu1δ2i

uiu2 pu2δ1i pui(1 + δ2i)
uiu3 pu3δ1i pu3δ2i

uiE pu1ui + δ1i pE pu2ui + δ2i pE

pδ3i −
pui
T

pu1δ3i −
puiu1

T
pu2δ3i −

puiu2
T

pui(1 + δ3i) −
puiu3

T

pu3ui + δ3i pE −
puiu2

2T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

Pi = p (0, δ1i, δ2i, δ3i, ui)* , R = ρ (0, F1, F2, F3, uiFi)* .

Here, E = T + u2/2; u2 = u2
1 + u2

2 + u2
3; kpq

i j = δpqδi j + δqiδp j −

2δpiδq j/3; δi j is Kronecker delta.
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