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Abstract

Mechanisms affecting the transition to three-dimensionality in a cylinder wake are studied based on the local description
of the perturbations development for modes A and B. Early stages of three-dimensional vortex structures growth are
simulated by the direct numerical solution of the Navier-Stokes equations. The influence of basic mechanisms (such as
vorticity diffusion, stretching and tilting of vortex lines) on the growth and decay of perturbations in fluid particles, and
on the change in the direction of generated longitudinal vorticity vectors is considered. The same analysis is carried out for
an idealized elliptic flow, which reveals qualitative similarities and differences in the perturbations development inside the
forming vortex and for the flow with elliptical streamlines. It was shown that the line, along which perturbations of mode
B concentrate, can be approximately found based on a two-dimensional solution. The instability of mode B is studied by
introducing a simplified two-dimensional flow, which approximates the flow in the braid shear layer. Based on the linear
stability analysis of this flow it can be assumed that the curvature of the braid shear layer plays an important role in the
mode B instability.

Keywords: secondary instability, wake transition, three-dimensional wake, Navier–Stokes equations

1. Introduction

It is well known that the transition to three-dimensionality in the flow behind a circular cylinder includes two stages
of stability loss, called modes A and B [1]. Despite the fact that the publication on the existence of two modes appeared
more than 30 years ago, their physical nature is still under discussion: the mechanism triggering the instability when the
Reynolds number exceeds the critical one has not been finally established yet.

The critical question on the nature of the first three-dimensional instability (mode A) is what the role of the braid
shear layer is. In this region perturbations are growing intensively. It is commonly believed that in this area previously
developed perturbations are simply amplified [2, 3]. In its turn they appear in the vortex cores of forming vortices [2, 4, 5].
The studies mentioned above form the basis for the hypothesis that the elliptic instability of the vortex cores is likely
to trigger the three-dimensional transition, and that the amplification in the braid regions, resulting in the formation of
intense longitudinal vorticity, is the secondary effect.

Nevertheless, other hypotheses of the three-dimensional transition are allowed, since there is still no cogent description
of the instability in the localized flow in the vortex formation region: namely, a forming vortex and braid region. One
can assume, that the flow instability in the braid shear layer is the trigger of the three-dimensional transition and elliptic
instability is the secondary effect. The perturbations generated in the braid shear layer could create special conditions on
the boundary of an elliptic flow in the vortex cores, without it such a flow could be stable. Apparently this is the case
with the appearance of elliptic instability-like three-dimensional structures in the developed wake. Indeed, in a more recent
work [6] it was shown that the flow in a developed wake is linearly stable, when Re is close to a critical value. Hence,
in the real flow the appearance of three-dimensional structures in vortex cores of a developed wake can be caused by the
previously formed perturbations in the braid shear layer, which create special conditions for the development of the elliptic
instability-like structures.

The nature of the second three-dimensional instability (mode B) is associated with the instability of braid regions
[2, 4, 5, 7]. However, there are still no theoretical estimations of the local instability of such flows, which predict critical
parameters well. The study of mode B is complicated by the fact that it usually develops together with the perturbations of
mode A, since the critical Reynolds number for mode A is smaller than for mode B. In numerical simulations it is possible
to obtain ‘pure’ mode B excluding linearly unstable perturbations of mode A, by reducing the computational domain in
the spanwise direction and using periodic or symmetry conditions on the spanwise boundaries, see, for example, [8, 9].
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More detailed reviews on the properties of modes A and B, the physical reasons of three-dimensional transition and
routes to turbulence can be found in the papers mentioned above, as well as in many other studies, for example, see [10–15].

The present paper focuses on the description of the early stages of the three-dimensional transition for modes A and
B using local characteristics of the two-dimensional base flow. We apply the approach suggested in [9] to analyze the
evolution of three-dimensional perturbations of modes A and B in fluid particles based on the action of four mechanisms:
the stretching of the vortex lines of perturbations by the base flow; shear deformations of the vortex lines of the base flow
by perturbations; viscous diffusion of perturbations; solid-state rotation of fluid particles. Another approach is used to
describe the mode B instability by constructing a simplified flow, which approximates the flow in the braid shear layer.

The main part of the paper is divided into four sections. In Sections 2 and 3 we briefly describe the problem formulation,
the numerical method and the approach to studying the development of perturbations in a fluid particle. The results for
modes A and B are presented separately in Sections 4 and 5. Details on the evolution of perturbations in fluid particles
are provided for both modes. For mode A we carry out the comparison of the flow inside a forming vortex and an idealized
elliptic flow, which is commonly used to estimate the characteristics of the vortex core instability. We present new ideas
on the mechanisms of mode B instability studying rough approximation of the flow in the braid shear layer. The method
for linear stability analysis of this simplified flow is described in Appendix A.

2. Numerical simulation

The problem under consideration in this paper is that an infinitely long circular cylinder is placed in the uniform cross
flow with velocity U∞. The flow regime is defined by the Reynolds number Re = U∞d/ν, where d and ν are the cylinder
diameter and the kinematic viscosity. The Cartesian coordinate system (x1, x2, x3) is fixed to a circular cylinder with axis
x3 coinciding with the axis of the cylinder. At infinity the flow is uniform and directed along the x1 axis. On the cylinder
surface velocity vector u equals zero. At the artificial boundaries in the spanwise direction x3 = ±L/2 we use symmetry
conditions.

The numerical simulations are based on solving Navier-Stokes equations for a viscous perfect gas. The nondimen-
sionalization is based on the diameter of the cylinder d and free-stream velocity U∞. For the considered flow regimes
compressibility effects are not important, that is why we do not focus on the relevant parameters here (they can be found
in [9], the Mach and Prandtl numbers are equal to 0.1 and 0.72). The problem is solved by a stabilized finite-element
method on unstructured tetrahedral meshes (and triangular meshes for two-dimensional simulations). More details can be
found in [9].

3. Basic mechanisms governing the perturbations development in a fluid particle

We are interested in the early stages of three-dimensionality development in time, when perturbations are relatively
small. To describe the development of small perturbations, we use a system of equations in terms of velocity u and vorticity
ω = ∇ × u. The base two-dimensional flow can be characterized by the following parameters: vorticity Ω(x1, x2, t) = Ωe3;
the positive eigenvalue S (x1, x2, t) of the strain rate tensor; and the angle Φ(x1, x2, t) between the principal direction and the
x1 axis. Since the perturbations are small and due to symmetry boundary conditions in the spanwise direction, we use the
following expressions for velocity and vorticity fields.

u(x1, x2, x3, t) = U(x1, x2, t) + v(x1, x2, t) sin γx3 + v3(x1, x2, t)e3 cos γx3,

ω(x1, x2, x3, t) = Ω(x1, x2, t) + ζ(x1, x2, t) cos γx3 + ζ3(x1, x2, t)e3 sin γx3,
(1)

here, U(x1, x2, t) = U1e1 + U2e2 is the velocity of the base flow; additional terms in Eq. (1) describe small perturbations;
v = v1e1 + v2e2 = v(cos θ1e1 + sin θ1e2), ζ = ζ1e1 + ζ2e2 = ζ(cos θe1 + sin θe2) are vectors in x1x2 plane; γ = π/L; ei are the unit
vectors along the xi-axis, i = 1, 2, 3.

The linearization of the vorticity transport equation with respect to the perturbations after some transformations leads
to the following equations [9].
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Here, D/Dt = ∂/∂t+u ·∇ ≈ ∂/∂t+U ·∇ is a linearized substantial derivative. To close the system of equations, the relationship
between the vorticity vector and the velocity can be used, γζ = (∇ · v,2 − γ2v2)e1 + (γ2v1 − ∇ · v,1)e2. Here, to describe the
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directions of perturbations vectors v, ζ relative to the base flow, we introduce additional angles: angle α between the
principal axis and ζ, α = θ − Φ and angle β between vectors ζ and v, β = θ1 − θ.

All functions in Eqs. (2) and (3) depend only on x1, x2, t and base flow parameters are included in the non-differential
form. One can also see that the x3 projections were excluded. The perturbation components along the x3 axis can be found
from the relations γv3 = v1,1 + v2,2 and γζ3 = −ζ1,1 − ζ2,2.

The form of Eqs. (2) and (3) for the perturbations allows us to consider quantities ζ and θ in the Lagrangian description
as the characteristics associated with a particular fluid particle of the base flow. The rate of amplitude or angle change
in a fluid particle can be described with 3 or 4 terms, having a clear connection with the basic physical mechanisms that
determine the development of vorticity in the flow: the first term (𝒮ζ , 𝒮θ) describes the mechanism of the perturbations
vortex lines stretching by the base flow; the second term (𝒱ζ , 𝒱θ) is related to spanwise shear deformations of the base
flow vortex lines by perturbations; the third term (𝒟ζ , 𝒟θ) describes the action of viscous diffusion; the forth term (ℛθ) is
the rotation of a fluid particle as a rigid body, which changes only the direction of the vorticity vector ζ.

Having numerical solutions in a three-dimensional formulation, we find all necessary values on the right-hand side using
the Fourier series expansion. Then we assess to what extent and in what regions each physical mechanism has a stabilizing
or destabilizing effect on the flow. The reasons of the transition are determined by the flow inside the vortex formation
region, that is why in Sections 4 and 5 we focus on the processes in the near wake with x1 < 3.

In the discussion of the results it is convenient to distinguish elliptic and hyperbolic subregions of the flow. If Q =

Ω2/4 − S 2 > 0, then rotation prevails; if Q < 0, then the stretching rate prevails. The regions with Q > 0 and Q < 0 are
called elliptic and hyperbolic flow regions respectively.

4. Mode A

The development of mode A perturbations can be described as follows, see [9] for details. Perturbations begin to grow
in the elliptic region of the forming vortex. Then they grow intensively in the hyperbolic region of the braid shear layer
and induce perturbations in a new forming vortex. The process repeats. One can follow the change in the local maximum
value of the perturbations amplitude ζmax as time increases. Two stages of growth with different growth rates are observed.

The first stage of perturbations growth is observed inside the new forming vortex. The first part of this stage corresponds
to the appearance of perturbations inside this vortex, and the growth is happening because of the shear deformation of the
base flow (𝒱ζ , 𝒱θ). That is why it supports the explanation of self-sustaining process previously suggested by (author?)
[4]: perturbations are induced by the deformation of a new vortex by the perturbations existing inside the downstream
one. Further at the first stage the situation inside the forming vortex is changing: the growth is connected with the vortex
line stretching (𝒮ζ , 𝒮θ).

Then the second stage of growth begins, which is more intense than the first one. This stage starts when perturbations
are leaving the core of the forming vortex. The reason of growth is the first mechanism, that is vortex line stretching (𝒮ζ ,
𝒮θ). Once the forming vortex is shed perturbations in braids regions are fading out.

The described process can be seen in Fig. 1, which shows vectors ζ, v and the principal direction of the strain rate
tensor at different points in the near wake. From Eq. (2) it follows, that the more aligned the principal direction and
the direction of ζ, the greater the growth of perturbations due to the stretching mechanism 𝒮ζ and from (3) one can see
that term 𝒮θ tends to reduce the angle between them. The more the angle between vectors v and ζ differs from the right
angle, the more pronounced the action of shear deformations 𝒱ζ is. Whether this will be growth or decay depends on
the sign of Ω cos β, just as the sign of Ω sin β determines in which direction this mechanism (𝒱θ) tends to rotate vector
ζ. For example, the interaction of perturbations fields between downstream and upstream vortices is clearly observed in
Fig. 1 a, b. At the vicinity of the boundary between two vortices cos β significantly differs from 0. That is why the action of
the shear deformation mechanism is pronounced. Likewise, the action of this mechanism is pronounced in the braid shear
layer (Fig. 1 c, d), however, it has mostly a stabilizing effect.

Another observation is that for mode A the flow in the braid shear layer is organized so that the principal direction and
vector ζ are not aligned. The non-alignment together with the more pronounced action of the shear deformation mechanism
(𝒱θ) determine the main differences between the development of perturbations in the braid shear layer for modes A and B
(in Fig. 3 we will see that the principal direction and vector ζ are mostly aligned and cos β is closer to zero for mode B).

Such information on the local description of perturbations can be useful in constructing or validating the simplified
models of the flow instability. Next we apply this approach to describe the theoretical solution for an idealized elliptic
instability, which can be used to build estimates of vortex core instability [4, 5, 16, 17]. The base flow is described by
velocity field

U = −

(︃
1
2

Ω + S
)︃

x2e1 +

(︃
1
2

Ω − S
)︃

x1e2, (4)

which is the exact solution of Navier-Stokes equations [18], here, Ω and S are constant. In the case of vanishing strain it
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(a) t = 70 (b) t = 71

(c) t = 72 (d) t = 73

Fig. 1: Perturbations evolution for Mode A at Re = 220 and L = 2. Filled regions are the regions of |Ω| ≥ 1; solid lines correspond to isolines Q = 0;
blue arrows and thick red solid lines are vectors v and ζ, their tails are placed in the dots, which correspond to the considered fluid particles;
thin solid lines indicate the principal direction, their length is proportional to the value of S . The following proportion is used for the lengths of
the segments |v| : |ζ | = 1 : 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

is possible to obtain an approximate solution for perturbations [19],
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Here, J0 and J2 are the first kind Bessel functions of argument
√

3γr; r, ϕ are polar coordinates; er, eϕ are unit vectors
along polar coordinates r and ϕ; σ is the growth rate, the theoretical expression for which can be found in [16, 19]; C is a
constant; sign ’−’ is used in the first equation because we shifted the solution from [19] along the x3 axis by π/(2γ).

Figure 2 shows the action of the basic mechanisms (𝒮ζ , 𝒱ζ) and perturbations vectors for an idealized elliptic flow and
for the flow inside the upstream forming vortex in Fig. 1c (the coordinate system for the forming vortex is rotated so that
the principal direction angle approximately equals 45 degrees as for an idealized flow). The parameters of the idealized
flow Ω, S , γ in Eqs. (4), (5) correspond to the considered case from direct numerical simulations.

The qualitative comparison in Fig. 2 shows, that these solutions turned out to be clearly different. One can see two
(Fig. 2c) and four (Fig. 2f) regions of growth and decay caused by shear deformations (𝒱ζ). However, as for an idealized
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(a) Perturbations vectors (b) 𝒮ζζ
2 (c) 𝒱ζζ

2

(d) Perturbations vectors (e) 𝒮ζζ
2 (f) 𝒱ζζ

2

Fig. 2: The comparison of perturbations development inside the forming vortex at Re = 220, L = 2, t = 72 (a-c) and for an idealized elliptic
instability (d-f). Blue arrows and thick red solid lines are vectors v and ζ, their tails are placed in the dots, which correspond to the considered
fluid particles; thin solid lines indicate the principal direction. The following proportion is used for the lengths of the segments in plots (a) and
(b), |v| : |ζ | = 1 : 2. Red and blue colors in plots (b), (c), (e), (f) correspond to the positive and negative action of basic mechanisms 𝒮ζ , 𝒱ζ . Solid
green lines are streamlines, the dashed line in plots (a)-(c) is isoline Q = 0. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

flow it seems that the action of this mechanism in Fig. 2c is almost canceled out while a fluid particle passes along the
elliptic contour. And the growth is related to the stretching of vortex lines (𝒮ζ). The difference in distribution of 𝒱ζ as well
as the shift of the perturbed region relative to the vortex center can be caused by disturbed conditions on the boundary of
the elliptic region and by the fact that this region is finite, opposite to the considered idealized flow. It may be possible to
resolve these discrepancies by constructing the localized solution, see [19, 20].

5. Mode B

For mode B the process of perturbations development takes place mostly outside the elliptic regions and there is only
one stage of growth [9]. The growth is caused by the vortex line stretching mechanism (𝒮ζ). Perturbations in braid regions
are fading out when a vortex is shed in the wake.

The development of perturbations vectors v and ζ is shown in Fig. 3. Since the angle between vectors v and ζ is close
to the right one the contribution of the shear deformation mechanism (𝒱ζ) to perturbations growth/decay is insignificant
in comparison to the contribution of the stretching mechanism. Unlike mode A, the direction of vorticity vector rotation
is mostly defined by the shear deformation of the base flow and rigid body rotation, because the directions of the principal
axis and vorticity vector almost coincide. Therefore, the rotation of the principal direction in a fluid particle and the
rotation of ζ because of the shear deformation (𝒱θ) and rigid body rotation (ℛθ) mechanisms are almost synchronized.

We are going to give a rough description of mode B instability by analyzing a simplified flow approximating the local
flow, where perturbations of mode B appear. One can notice that perturbations are elongated along some line (further ‘core
line’), which can be defined as the line with the spanwise velocity equal to zero, u3 = 0, see Fig. 4a. Thus we assume that
for the instability of the braid shear layer the dependence of the base flow on the coordinate across the core line is more
significant than along it. When a simplified flow is reconstructed from the two-dimensional one there is no information on
the core line. However, it was found out that the core line is close to the line where the action of diffusion is zero ∇2Ω = 0,
Fig. 4a. This makes it possible to approximately identify this line based on a two-dimensional flow. Further we use line
∇2Ω = 0 as a definition for the core line. Figure 5 shows this line and the isolines Ω = ±0.5 at various Re. As Re increases
the length of vortex formation region decreases (Fig. 5a) and as a result the curvature of the core line increases (Fig. 5b).
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(a) t = 38 (b) t = 39

(c) t = 40 (d) t = 41

Fig. 3: Perturbations evolution for Mode B at Re = 300 and L = 0.4. Filled regions are the regions of |Ω| ≥ 1; solid lines correspond to isolines
Q = 0; blue arrows and thick red solid lines are vectors v and ζ, their tails are placed in the dots, which correspond to the considered fluid
particles; thin solid lines indicate the principal direction, their length is proportional to the value of S . The following proportion is used for the
lengths of the segments |v| : |ζ | = 1 : 10. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Let us consider the simplified one-dimensional base flow in polar coordinates (r, ϕ), Fig. 4b. The flow is defined in
the annular layer R − δ ≤ r ≤ R + δ, here R is a curvature radius of the core line in the point under consideration; δ is
constant. We assume that the flow is stationary and it depends only on radial coordinate r. The latter assumption can
be supported by an observation on the weak dependence of mutual arrangement of vectors ζ, v and the principal direction
on the coordinate along core line in the region, where perturbations grow intensively (Fig. 3). The normal ur = V(r) and
tangential uϕ = U(r) velocity components across the layer are equal to the ones across the core line (in the real flow) in
a moving coordinate system, at which the core line is locally fixed. The choice of such a coordinate system was made
qualitatively (since the core line is deforming in time), hence, uncertainty is introduced. Figure 6 shows the normal and
tangential velocity profiles for various points on the core line (Fig. 5b) at Re = 100, 200, 300 and time t corresponding to
the intensive growth of perturbations in the braid region. The qualitative behavior of U(r) and V(r) is similar.

The linear stability of the flow is studied by the numerical solution of eigenvalue problem, see Appendix A. The following
kind of velocity perturbations are considered: in cylindrical coordinates (r, ϕ, z)

u′r = eβtvn(r) sin γz, u′ϕ = eβtvs(r) sin γz, u′z = eβtvz(r) cos γz.

Before discussing the results, it is necessary to make a few comments about the roughness of the approximation. It
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(a)

R+δ 

r
φ

R
−

δ
 

(b)

Fig. 4: Reconstruction of the approximation for the braid shear layer flow. On the plot (a) solid (pink) and dashed (yellow) lines are core lines,
defined by relations ∇2Ω = 0 and u3 = 0; amplitude ζ of vorticity in the streamwise plane is shown with gray regions; vortices of the base flow are
pale red and blue regions. Scheme (b) shows a simplified flow in polar coordinates. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

(a) (b)

Fig. 5: Vorticity (Ω = ±0.5) and core lines (parts of lines ∇2Ω = 0) at various Reynolds numbers, Re = 100, 150, 200, 250, 300. Value of t for
each Re corresponds to zero lift coefficient CL and CL,t > 0. On the plot (b) the circles indicate the control points, which are used to construct a
simplified flow (the points are numbered from left to right); the subregion of the most intensive growth of perturbations at Re = 300 is filled in
red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

does not accurately describe the real flow, since the flow is changing along the core line, it is not stationary and the core
line is moving and deforming in time. The simplified base flow by itself is not a solution of the Navier-Stokes equations,
however it could be an approximation of it. The curvature of the core line and the coordinate system fitted to this line
are obtained qualitatively. Nevertheless, the stability analysis gives the results consistent with the real data on mode B
instability and that is why the simplified flow might contain some of the necessary physics.

The results of linear stability analysis are shown in Fig. 7. At Re = 300 and fixed radius of curvature, R = 1, the
predicted wavenumber γ* (with maximum value of β) varies between 5.2 and 6 (Fig. 7a), which corresponds to wavelengths
1.05 ≤ λ* ≤ 1.21. The change of the sections does not significantly change γ*, however, it changes β and the range of
unstable wavenumbers γ.

The increase in δ leads to the reduction in γ* (Fig. 7 a). It is not clear what the right choice for δ is, since if it is too
big the velocity profiles begin to contain flow properties not related to the braid shear layer. One might have to choose the
value close to 0.4, which corresponds to a characteristic length scale for vortex structures of mode B. The value δ = 0.4 and
R = 1 leads to λ* ≈ 1, which is close to the theoretical value. However, the increase of R leads to smaller values of γ*, and,
hence, to a worse agreement (Fig. 7 b). The idealized flow becomes more stable as Re decreases or the radius of curvature
increases (Fig. 7 b, c). In particular, the flow is stable if Re = 100.

These results show a scatter of critical parameters, which makes it difficult to obtain quantitative estimates. However,
with a certain choice of model parameters the results are in qualitative agreement with the real data. And more importantly,
the analysis gives one an idea on the influence of the Re and R on such flows. Having this one can assume that the instability
of the braid shear layer is related to its curvature which becomes greater as Re increases (Fig. 5b), due to the reduction of
the length of the vortex formation region (Fig. 5a). With the increase of the curvature the braid shear layer becomes more
unstable (Fig. 7b). In its turn the velocity profiles themselves become more unstable as Re increases (Fig. 7c), however, in
the limit R→ ∞ they are stable (Fig. 7b). That is why the instability of mode B could be caused by the instability of the
braid shear layers that are curved enough.

In [7] the centrifugal instability was discussed as a possible reason for the emergence of Mode B instability. The results
of this section can be interpreted as some support of their reasoning, since the action of the centrifugal forces should be
more pronounced with the increasing velocity and decreasing curvature radius. Both happen with the increase in the
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Fig. 6: Velocity profiles for an idealized base flow for various sections of the braid shear layer (shown with circles in Fig. 5 b) at Re = 100, 200,
300.

 Section 3
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(a) Various sections (b) Various R (c) Various Re

Fig. 7: Linear stability analysis of an idealized flow for various (a) sections of the braid shear layer at Re = 300, R = 1, the filled area shows the
scatter of the curve β(γ) as δ changes in the range [0.4, 0.8]; (b) radii of curvature at Re = 300, δ = 0.4, 2nd section; (c) Reynolds numbers at R = 2,
δ = 0.4, 2nd section (flow is stable if Re = 100).

Reynolds number, as can be seen in Figs. 5b and 6.

6. Conclusions

The three-dimensional transition in the near wake behind a circular cylinder is described based on the local characteris-
tics of the flow. The previous results on the analysis of basic mechanisms affecting the growth and decay of perturbations in
a fluid particle for modes A and B [9] were supplemented by the consideration of the mutual arrangement of perturbations
vectors v, ζ and base flow parameters S and Ω. Thus, the reasons of change in the direction of longitudinal vorticity vector ζ
can be traced. In particular, it was shown that, for the braid shear layer instability (mode B) the perturbations ζ are mostly
aligned with the principal direction of the strain rate tensor. The distribution of the principal direction is significantly
non-uniform in the hyperbolic region. That is why the rotation of the principal direction in fluid particles is synchronized
with the rotation of ζ due to the action of the shear deformation (𝒱θ) and rigid body rotation (ℛθ) mechanisms. For mode
A the process of the perturbations growth in the braid shear layer is different: ζ and the principal direction is not aligned,
and the angle between ζ and v is significantly different from the right angle, which is manifested in the spanwise waviness
of the hyperbolic region caused by shear deformations (𝒱θ).

This approach was also applied to an idealized flow with elliptic streamlines, due to the fact that three-dimensional
instability of such a flow is usually associated with the instability of mode A. The qualitative difference was observed in
the action of the shear deformation mechanism (𝒱θ) for the idealized flow (in the case of vanishing strain) and the flow
inside the forming vortex. Perhaps, this issue can be overcome by constructing the solution in the finite elliptic domain
with certain conditions on its boundary.

It was found that the core line along which perturbations of mode B concentrate could be well approximated by the
line of zero vorticity diffusion, ∇2Ω = 0. This allows to choose a region where three-dimensional perturbations may develop
based only on the parameters of the two-dimensional flow. The instability of braid shear layers was studied assuming that
the dependence of the base flow across the core line is more significant than along it. A rough approximation of the region
with the most intensive growth by a stationary one-dimensional flow was proposed. The linear stability analysis of such
idealized flows gives a general idea of the flow dependence in the hyperbolic region on the Reynolds number and the radius
of curvature. It allowed us to assume that the instability of mode B is related to the curvature of the braid shear layers.
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Appendix A. Linear stability analysis of an idealized flow for mode B

For a solution, which does not depend on ϕ, the Navier-Stokes equations in polar coordinates (r, ϕ, z) can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
ur,t + urur,r + uzur,z −

1
r u2

ϕ = −p,r + 1
Re

[︁
1
r
(︀
rur,r

)︀
,r + ur,zz −

1
r2 ur

]︁
,

uϕ,t + uruϕ,r + uzuϕ,z + 1
r uruϕ = − 1

r p,ϕ + 1
Re

[︂
1
r

(︁
ruϕ,r

)︁
,r

+ uϕ,zz −
1
r2 uϕ

]︂
,

uz,t + uruz,r + uzuz,z = −p,z + 1
Re

[︁
1
r
(︀
ruz,r

)︀
,r + uz,zz

]︁
,

(rur),r + ruz,z = 0.

The perturbed flow is expressed as follows ur = V(r) + eβtvn(r) sin γz, uϕ = U(r) + eβtvs(r) sin γz, uz = eβtvz(r) cos γz, p =

P(r) + eβtq(r) sin γz, where the base two-dimensional flow is ur = V(r), uϕ = U(r), uz = 0, p = P(r). Substituting these in the
Navier-Stokes equations leads to the following system.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

βvn + (Vvn)′ − 2
r Uvs = −q′ + 1

Re Lvn,

βvs + 1
r V(rvs)′ + 1

r (rU)′vn = 1
Re Lvs,

βvz + Vv′z = −γq + 1
Re

(︁
Lvz + 1

r2 vz

)︁
,

(rvn)′ − γrvz = 0.

Here, L(·) = (·)′′ + r−1(·)′ − r−2(·) − γ2(·). Excluding pressure q and velocity component vz from the system we obtain⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
βw + 2

r γ
2Uvs + [Vw]′ − 1

Re Lw = 0,
βvs + 1

r V(rvs)′ + 1
r (rU)′vn −

1
Re Lvs = 0,

w − Lvn = 0.
(A.1)

The spectral problem given by Eqs. (A.1) with eigenvalue β is solved on an annulus r1 ≤ r ≤ r2. We assume that at r = r1
and r = r2 perturbations are absent. This problem is solved numerically by the local method (with shooting procedure),
for example, described in [21].
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